1
JEE Advanced 2020 Paper 1 Offline
Numerical
+4
-0
Let a1, a2, a3, .... be a sequence of positive integers in arithmetic progression with common difference 2. Also, let b1, b2, b3, .... be a sequence of positive integers in geometric progression with common ratio 2. If a1 = b1 = c, then the number of all possible values of c, for which the equality 2(a1 + a2 + ... + an) = b1 + b2 + ... + bn holds for some positive integer n, is ...........
2
JEE Advanced 2020 Paper 1 Offline
Numerical
+4
-0
Let f : [0, 2] $$\to$$ R be the function defined by

$$f(x) = (3 - \sin (2\pi x))\sin \left( {\pi x - {\pi \over 4}} \right) - \sin \left( {3\pi x + {\pi \over 4}} \right)$$

If $$\alpha ,\,\beta \in [0,2]$$ are such that $$\{ x \in [0,2]:f(x) \ge 0\} = [\alpha ,\beta ]$$, then the value of $$\beta - \alpha$$ is ..........
3
JEE Advanced 2020 Paper 1 Offline
Numerical
+4
-0
In a triangle PQR, let a = QR, b = RP, and c = PQ. If |a| = 3, |b| = 4

and $${{a\,.(\,c - \,b)} \over {c\,.\,(a - \,b)}} = {{|a|} \over {|a| + |b|}}$$, then the value of |a $$\times$$ b|2 is ......
4
JEE Advanced 2020 Paper 1 Offline
Numerical
+4
-0
For a polynomial g(x) with real coefficients, let mg denote the number of distinct real roots of g(x). Suppose S is the set of polynomials with real coefficients defined by

$$S = \{ {({x^2} - 1)^2}({a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3}):{a_0},{a_1},{a_2},{a_3} \in R\}$$;

For a polynomial f, let f' and f'' denote its first and second order derivatives, respectively. Then the minimum possible value of (mf' + mf''), where f $$\in$$ S, is ..............
2023
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
EXAM MAP
Joint Entrance Examination