1
JEE Advanced 2020 Paper 1 Offline
Numerical
+4
-0
Change Language
Consider one mole of helium gas enclosed in a container at initial pressure P1 and volume V1. It expands isothermally to volume 4V1. After this, the gas expands adiabatically and its volume becomes 32V1. The work done by the gas during isothermal and adiabatic expansion processes are Wiso and Wadia, respectively. If the ratio $${{{W_{iso}}} \over {{W_{adia}}}}$$ = f ln 2, then f is ______.
Your input ____
2
JEE Advanced 2020 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Shown in the figure is a semicircular metallic strip that has thickness t and resistivity $$\rho $$. Its inner radius is R1 and outer radius is R2. If a voltage V0 is applied between its two ends, a current I flows in it. In addition, it is observed that a transverse voltage $$\Delta $$V develops between its inner and outer surfaces due to purely kinetic effects of moving electrons (ignore any role of the magnetic field due to the current). Then (figure is schematic and not drawn to scale) JEE Advanced 2020 Paper 1 Offline Physics - Current Electricity Question 29 English
A
$$I = {{{V_0}t} \over {\pi \rho }}\ln \left( {{{{R_2}} \over {{R_1}}}} \right)$$
B
the outer surface is at a higher voltage than the inner surface
C
the outer surface is at a lower voltage than the inner surface
D
$$\Delta $$V $$ \propto $$ I2
3
JEE Advanced 2020 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
A particle of mass m moves in circular orbits with potential energy V(r) = Fr, where F is a positive constant and r is its distance from the origin. Its energies are calculated using the Bohr model. If the radius of the particle’s orbit is denoted by R and its speed and energy are denoted by v and E, respectively, then for the nth orbit (here h is the Planck’s constant)
A
$$R \propto {n^{{1 \over 3}}}$$ and $$v \propto {n^{{2 \over 3}}}$$
B
$$R \propto {n^{{2 \over 3}}}$$ and $$v \propto {n^{{1 \over 3}}}$$
C
$$E = {3 \over 2}{\left( {{{{n^2}{h^2}{F^2}} \over {4{\pi ^2}m}}} \right)^{{1 \over 3}}}$$
D
$$E = 2{\left( {{{{n^2}{h^2}{F^2}} \over {4{\pi ^2}m}}} \right)^{{1 \over 3}}}$$
4
JEE Advanced 2020 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Sometimes it is convenient to construct a system of units so that all quantities can be expressed in terms of only one physical quantity. In one such system, dimensions of different quantities are given in terms of a quantity X as follows: [position] = [X$$\alpha $$]; [speed] = [X$$\beta $$ ]; [acceleration] = [Xp]; [linear momentum] = [Xq]; [force] = [Xr]. Then
A
$$\alpha $$ + p = 2$$\beta $$
B
p + q - r = $$\beta $$
C
p - q + r = $$\alpha $$
D
p + q + r = $$\beta $$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12