1
JEE Advanced 2020 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
Let the functions f : R $$ \to $$ R and g : R $$ \to $$ R be defined by

f(x) = ex $$-$$ 1 $$-$$ e$$-$$|x $$-$$ 1|

and g(x) = $${1 \over 2}$$(ex $$-$$ 1 + e1 $$-$$ x).

The the area of the region in the first quadrant bounded by the curves y = f(x), y = g(x) and x = 0 is
A
$$(2 - \sqrt 3 ) + {1 \over 2}(e - {e^{ - 1}})$$
B
$$(2 + \sqrt 3 ) + {1 \over 2}(e - {e^{ - 1}})$$
C
$$(2 - \sqrt 3 ) + {1 \over 2}(e + {e^{ - 1}})$$
D
$$(2 + \sqrt 3 ) + {1 \over 2}(e + {e^{ - 1}})$$
2
JEE Advanced 2020 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
Let a, b and $$\lambda $$ be positive real numbers. Suppose P is an end point of the latus return of the
parabola y2 = 4$$\lambda $$x, and suppose the ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ passes through the point P. If the tangents to the parabola and the ellipse at the point P are perpendicular to each other, then the eccentricity of the ellipse is
A
$${1 \over {\sqrt 2 }}$$
B
$${{1 \over 2}}$$
C
$${{1 \over 3}}$$
D
$${{2 \over 5}}$$
3
JEE Advanced 2020 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
Let C1 and C2 be two biased coins such that the probabilities of getting head in a single toss are $${{2 \over 3}}$$ and $${{1 \over 3}}$$, respectively. Suppose $$\alpha $$ is the number of heads that appear when C1 is tossed twice, independently, and suppose $$\beta $$ is the number of heads that appear when C2 is tossed twice, independently. Then the probability that the roots of the quadratic polynomial x2 $$-$$ ax + $$\beta $$ are real and equal, is
A
$${{40} \over {81}}$$
B
$${{20} \over {81}}$$
C
$${{1} \over {2}}$$
D
$${{1} \over {4}}$$
4
JEE Advanced 2020 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
Consider the rectangles lying the region

$$\left\{ {(x,y) \in R \times R:0\, \le \,x\, \le \,{\pi \over 2}} \right.$$ and $$\left. {0\, \le \,y\, \le \,2\sin (2x)} \right\}$$

and having one side on the X-axis. The area of the rectangle which has the maximum perimeter among all such rectangles, is
A
$${{3\pi \over 2}}$$
B
$$\pi $$
C
$${\pi \over {2\sqrt 3 }}$$
D
$${{\pi \sqrt 3 } \over 2}$$
JEE Advanced Papers
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12