1
JEE Advanced 2018 Paper 1 Offline
Numerical
+3
-0
Change Language
Two conducting cylinders of equal length but different radii are connected in series between two heat baths kept at temperatures $${T_1} = 300\,K$$ and $${T_2} = 100\,K$$, as shown in the figure. The radius of the bigger cylinder is twice that of the smaller once and the thermal conductivities of the materials of the smaller and the larger cylinders are $${K_1}$$ and $${K_2}$$ respectively. If the temperature at the junction of the two cylinders in the steady state is $$200$$ $$K,$$ then $${K_1}/{K_2} = $$ ______________.

JEE Advanced 2018 Paper 1 Offline Physics - Properties of Matter Question 38 English
Your input ____
2
JEE Advanced 2018 Paper 1 Offline
Numerical
+3
-0
Change Language
In the $$xy$$-plane, the region $$y > 0$$ has a uniform magnetic field $${B_1}\widehat k$$ and the region $$y < 0$$ has another uniform magnetic field $${B_2}\widehat k.$$ A positively charged particle is projected from the origin along the positive $$y$$-axis with speed $${v_0} = \pi \,m{s^{ - 1}}$$ at $$t=0,$$ as shown in the figure. Neglect gravity in this problem. Let $$t=T$$ be the time when the particle crosses the $$x$$-axis from below for the first time. If $${B_2} = 4{B_1},$$ the average speed of the particle, in $$m{s^{ - 1}},$$ along the $$x$$-axis in the time interval $$T$$ is ___________.

JEE Advanced 2018 Paper 1 Offline Physics - Magnetism Question 45 English
Your input ____
3
JEE Advanced 2018 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
In electromagnetic theory, the electric and magnetic phenomena are related to each other. Therefore, the dimensions of electric and magnetic quantities must also be related to each other. In the questions below, $$[E]$$ and $$[B]$$ stand for dimensions of electric and magnetic fields respectively, while $$\left[ {{\varepsilon _0}} \right]$$ and $$\left[ {{\mu _0}} \right]$$ stand for dimensions of the permittivity and permeability of free space respectively. $$\left[ L \right]$$ and $$\left[ T \right]$$ are dimensions of length and time respectively. All the quantities are given in $$SI$$ units.

The relation between $$\left[ {{\varepsilon _0}} \right]$$ and $$\left[ {{\mu _0}} \right]$$ is
A
$$\left[ {{\mu _0}} \right] = \left[ {{\varepsilon _0}} \right]{\left[ L \right]^2}{\left[ T \right]^{ - 2}}$$
B
$$\left[ {{\mu _0}} \right] = \left[ {{\varepsilon _0}} \right]{\left[ L \right]^{ - 2}}{\left[ T \right]^2}$$
C
$$\left[ {{\mu _0}} \right] = {\left[ {{\varepsilon _0}} \right]^{ - 1}}{\left[ L \right]^2}{\left[ T \right]^{ - 2}}$$
D
$$\left[ {{\mu _0}} \right] = {\left[ {{\varepsilon _0}} \right]^{ - 1}}{\left[ L \right]^{ - 2}}{\left[ T \right]^2}$$
4
JEE Advanced 2018 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
If the measurement errors in all the independent quantities are known, then it is possible to determine the error in any dependent quantity. This is done by the use of series expansion and truncating the expansion at the first power of the error. For example, consider the relation $$z = x/y.$$ If the errors in $$x,y$$ and $$z$$ are $$\Delta x,\Delta y$$ and $$\Delta z,$$ respectively, then
$$$z \pm \Delta z = {{x \pm \Delta x} \over {y \pm \Delta y}} = {x \over y}\left( {1 \pm {{\Delta x} \over x}} \right){\left( {1 \pm {{\Delta y} \over y}} \right)^{ - 1}}.$$$

The series expansion for $${\left( {1 \pm {{\Delta y} \over y}} \right)^{ - 1}},$$ to first power in $$\Delta y/y.$$ is $$1 \pm \left( {\Delta y/y} \right).$$ The relative errors in independent variables are always added. So the error in $$z$$ will be
$$$\Delta z = z\left( {{{\Delta x} \over x} + {{\Delta y} \over y}} \right).$$$

The above derivation makes the assumption that $$\Delta x/x < < 1,$$ $$\Delta y/y < < 1.$$ Therefore, the higher powers of these quantities are neglected.

In an experiment the initial number of radioactive nuclei is $$3000.$$ It is found that $$1000 \pm 40$$ nuclei decayed in the first $$1.0s.$$ For $$\left| x \right| < < 1.$$ $$\ln \left( {1 + x} \right) = x$$ up to first power in $$x.$$ The error $$\Delta \lambda ,$$ in the determination of the decay constant $$\lambda ,$$ in $${s^{ - 1}},$$ is
A
$$0.04$$
B
$$0.03$$
C
$$0.02$$
D
$$0.01$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12