1
JEE Advanced 2018 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
Let P1 : 2x + y $$-$$ z = 3 and P2 : x + 2y + z = 2 be two planes. Then, which of the following statement(s) is(are) TRUE?
A
The line of intersection of P1 and P2 has direction ratios 1, 2, $$-$$1
B
The line $${{3x - 4} \over 9} = {{1 - 3y} \over 9} = {z \over 3}$$ is perpendicular to the line of intersection of P1 and P2
C
The acute angle between P1 and P2 is 60$$^\circ $$
D
If P3 is the plane passing through the point (4, 2, $$-$$2) and perpendicular to the line of intersection of P1 and P2, then the distance of the point (2, 1, 1) from the plane P3 is $${2 \over {\sqrt 3 }}$$
2
JEE Advanced 2018 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
For every twice differentiable function $$f:R \to [ - 2,2]$$ with $${(f(0))^2} + {(f'(0))^2} = 85$$, which of the following statement(s) is(are) TRUE?
A
There exist r, s $$ \in $$ R, where r < s, such that f is one-one on the open interval (r, s)
B
There exists x0 $$ \in $$ ($$-$$4, 0) such that |f'(x0)| $$ \le $$ 1
C
$$\mathop {\lim }\limits_{x \to \infty } f(x) = 1$$
D
There exists $$\alpha $$$$ \in $$($$-$$4, 4) such that f($$\alpha $$) + f"($$\alpha $$) = 0 and f'($$\alpha $$) $$ \ne $$ 0
3
JEE Advanced 2018 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
Let f : R $$ \to $$ R and g : R $$ \to $$ R be two non-constant differentiable functions. If f'(x) = (e(f(x) $$-$$ g(x))) g'(x) for all x $$ \in $$ R and f(1) = g(2) = 1, then which of the following statement(s) is (are) TRUE?
A
f(2) < 1 $$-$$ loge 2
B
f(2) > 1 $$-$$ loge 2
C
g(1) > 1 $$-$$ loge 2
D
g(1) < 1 $$-$$ loge 2
4
JEE Advanced 2018 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
Let f : [0, $$\infty $$) $$ \to $$ R be a continuous function such that

$$f(x) = 1 - 2x + \int_0^x {{e^{x - t}}f(t)dt} $$ for all x $$ \in $$ [0, $$\infty $$). Then, which of the following statement(s) is (are) TRUE?
A
The curve y = f(x) passes through the point (1, 2)
B
The curve y = f(x) passes through the point (2, $$-$$1)
C
The area of the region $$\{ (x,y) \in [0,1] \times R:f(x) \le y \le \sqrt {1 - {x^2}} \} $$ is $${{\pi - 2} \over 4}$$
D
The area of the region $$\{ (x,y) \in [0,1] \times R:f(x) \le y \le \sqrt {1 - {x^2}} \} $$ is $${{\pi - 1} \over 4}$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12