1
JEE Advanced 2018 Paper 1 Offline
Numerical
+3
-0
Let a, b, c three non-zero real numbers such that the equation $$\sqrt 3 a\cos x + 2b\sin x = c,x \in \left[ { - {\pi \over 2},{\pi \over 2}} \right]$$, has two distinct real roots $$\alpha $$ and $$\beta $$ with $$\alpha + \beta = {\pi \over 3}$$. Then, the value of $${b \over a}$$ is ............
Your input ____
2
JEE Advanced 2018 Paper 1 Offline
Numerical
+3
-0
A farmer F1 has a land in the shape of a triangle with vertices at P(0, 0), Q(1, 1) and R(2, 0). From this land, a neighbouring farmer F2 takes away the region which lies between the sides PQ and a curve of the form y = xn (n > 1). If the area of the region taken away by the farmer F2 is exactly 30% of the area of $$\Delta $$PQR, then the value of n is .................
Your input ____
3
JEE Advanced 2018 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Let S be the circle in the XY-plane defined the equation x2 + y2 = 4.
Let E1E2 and F1F2 be the chords of S passing through the point P0 (1, 1) and parallel to the X-axis and the Y-axis, respectively. Let G1G2 be the chord of S passing through P0 and having slope$$-$$1. Let the tangents to S at E1 and E2 meet at E3, then tangents to S at F1 and F2 meet at F3, and the tangents to S at G1 and G2 meet at G3. Then, the points E3, F3 and G3 lie on the curve
Let E1E2 and F1F2 be the chords of S passing through the point P0 (1, 1) and parallel to the X-axis and the Y-axis, respectively. Let G1G2 be the chord of S passing through P0 and having slope$$-$$1. Let the tangents to S at E1 and E2 meet at E3, then tangents to S at F1 and F2 meet at F3, and the tangents to S at G1 and G2 meet at G3. Then, the points E3, F3 and G3 lie on the curve
4
JEE Advanced 2018 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Let S be the circle in the XY-plane defined the equation x2 + y2 = 4.
Let P be a point on the circle S with both coordinates being positive. Let the tangent to S at P intersect the coordinate axes at the points M and N. Then, the mid-point of the line segment MN must lie on the curve
Let P be a point on the circle S with both coordinates being positive. Let the tangent to S at P intersect the coordinate axes at the points M and N. Then, the mid-point of the line segment MN must lie on the curve
Paper analysis
Total Questions
Chemistry
18
Mathematics
18
Physics
18
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006
IIT-JEE 2006 Screening
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004 Screening
IIT-JEE 2004
IIT-JEE 2003 Screening
IIT-JEE 2003
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001 Screening
IIT-JEE 2001
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998 Screening
IIT-JEE 1998
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995 Screening
IIT-JEE 1995
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978