1
JEE Advanced 2016 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let $$\widehat u = {u_1} \widehat i + {u_2}\widehat j + {u_3}\widehat k$$ be a unit vector in $${{R^3}}$$ and
$$\widehat w = {1 \over {\sqrt 6 }}\left( {\widehat i + \widehat j + 2\widehat k} \right).$$ Given that there exists a vector $${\overrightarrow v }$$ in $${{R^3}}$$ such that $$\left| {\widehat u \times \overrightarrow v } \right| = 1$$ and $$\widehat w.\left( {\widehat u \times \overrightarrow v } \right) = 1.$$ Which of the following statement(s) is (are) correct?
A
There is exactly one choice for such $${\overrightarrow v }$$
B
There are infinitely many choices for such $${\overrightarrow v }$$
C
If $$\widehat u$$ lies in the $$xy$$-plane then $$\left| {{u_1}} \right| = \left| {{u_2}} \right|$$
D
If $$\widehat u$$ lies in the $$xz$$-plane then $$2\left| {{u_1}} \right| = \left| {{u_3}} \right|$$
2
JEE Advanced 2016 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let
$$f\left( x \right) = \mathop {\lim }\limits_{n \to \infty } {\left( {{{{n^n}\left( {x + n} \right)\left( {x + {n \over 2}} \right)...\left( {x + {n \over n}} \right)} \over {n!\left( {{x^2} + {n^2}} \right)\left( {{x^2} + {{{n^2}} \over 4}} \right)....\left( {{x^2} + {{{n^2}} \over {{n^2}}}} \right)}}} \right)^{{x \over n}}},$$ for

all $$x>0.$$ Then
A
$$f\left( {{1 \over 2}} \right) \ge f\left( 1 \right)$$
B
$$f\left( {{1 \over 3}} \right) \le f\left( {{2 \over 3}} \right)$$
C
$$\,f'\left( 2 \right) \le 0$$
D
$$\,{{f'\left( 3 \right)} \over {f\left( 3 \right)}} \ge {{f'\left( 2 \right)} \over {f\left( 2 \right)}}$$
3
JEE Advanced 2016 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language

Let $$P = \left[ {\matrix{ 1 & 0 & 0 \cr 4 & 1 & 0 \cr {16} & 4 & 1 \cr } } \right]$$ and I be the identity matrix of order 3. If $$Q = [{q_{ij}}]$$ is a matrix such that $${P^{50}} - Q = I$$ and $${{{q_{31}} + {q_{32}}} \over {{q_{21}}}}$$ equals

A
52
B
103
C
201
D
205
4
JEE Advanced 2016 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language

Let bi > 1 for I = 1, 2, ......, 101. Suppose logeb1, logeb2, ......., logeb101 are in Arithmetic Progression (A.P.) with the common difference loge2. Suppose a1, a2, ......, a101 are in A.P. such that a1 = b1 and a51 = b51. If t = b1 + b2 + .... + b51 and s = a1 + a2 + ..... + a51, then

A
s > t and a101 > b101
B
s > t and a101 < b101
C
s < t and a101 > b101
D
s < t and a101 < b101
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12