1
JEE Advanced 2016 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0
Change Language
Let $${F_1}\left( {{x_1},0} \right)$$ and $${F_2}\left( {{x_2},0} \right)$$ for $${{x_1} < 0}$$ and $${{x_2} > 0}$$, be the foci of the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 8} = 1$$. Suppose a parabola having vertex at the origin and focus at $${F_2}$$ intersects the ellipse at point $$M$$ in the first quadrant and at point $$N$$ in the fourth quadrant.

If the tangents to the ellipse at $$M$$ and $$N$$ meet at $$R$$ and the normal to the parabola at $$M$$ meets the $$x$$-axis at $$Q$$, then the ratio of area of the triangle $$MQR$$ to area of the quadrilateral $$M{F_1}N{F_2}$$is

A
$$3:4$$
B
$$4:5$$
C
$$5:8$$
D
$$2:3$$
2
JEE Advanced 2016 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0
Change Language
Let $${F_1}\left( {{x_1},0} \right)$$ and $${F_2}\left( {{x_2},0} \right)$$ for $${{x_1} < 0}$$ and $${{x_2} > 0}$$, be the foci of the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 8} = 1$$. Suppose a parabola having vertex at the origin and focus at $${F_2}$$ intersects the ellipse at point $$M$$ in the first quadrant and at point $$N$$ in the fourth quadrant.

The orthocentre of the triangle $${F_1}MN$$ is

A
$$\left( { - {9 \over {10}},0} \right)$$
B
$$\left( { {2 \over {3}},0} \right)$$
C
$$\left( { {9 \over {10}},0} \right)$$
D
$$\left( {{2 \over 3},\sqrt 6 } \right)$$
3
JEE Advanced 2016 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let f: R $$ \to \left( {0,\infty } \right)$$ and g : R $$ \to $$ R be twice differentiable functions such that f'' and g'' are continuous functions on R. Suppose f'$$(2)$$ $$=$$ g$$(2)=0$$, f''$$(2)$$$$ \ne 0$$ and g'$$(2)$$ $$ \ne 0$$. If
$$\mathop {\lim }\limits_{x \to 2} {{f\left( x \right)g\left( x \right)} \over {f'\left( x \right)g'\left( x \right)}} = 1,$$ then
A
$$f$$ has a local minimum at $$x=2$$
B
$$f$$ has a local maximum at $$x=2$$
C
$$f''(2)>f(2)$$
D
$$f(x)-f''(x)=0$$ for at least one $$x \in R$$
4
JEE Advanced 2016 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
The value of $$\int\limits_{-{\pi \over 2}}^{{\pi \over 2}} {{{{x^2}\cos x} \over {1 + {e^x}}}dx} $$ is equal to
A
$${{{\pi ^2}} \over 4} - 2$$
B
$${{{\pi ^2}} \over 4} + 2$$
C
$${\pi ^2} - {e^{{\pi \over 2}}}$$
D
$${\pi ^2} + {e^{{\pi \over 2}}}$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12