1
JEE Advanced 2016 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
In the circuit shown below, the key is pressed at time t = 0. Which of the following statement(s) is (are) true?

JEE Advanced 2016 Paper 2 Offline Physics - Current Electricity Question 24 English
A
The voltmeter display $$-$$5V as soon as the key is pressed and displays +5 V after a long time
B
The voltmeter will display 0 V at time t = ln 2 seconds
C
The current in the ammeter becomes 1/e of the initial value after 1 second
D
The current in the ammeter becomes zero after a long time
2
JEE Advanced 2016 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Light of wavelength $$\lambda$$ph falls on a cathode plate inside a vacuum tube as shown in the figure. The work function of the cathode surface is $$\phi$$ and the anode is a wire mesh of conducting material kept at a distance d from the cathode. A potential difference V is maintained between the electrodes. If the minimum de-Broglie wavelength of the electrons passing through the anode is $$\lambda$$e, which of the following statement(s) is (are) true?

JEE Advanced 2016 Paper 2 Offline Physics - Dual Nature of Radiation Question 18 English
A
$$\lambda$$e increases at the same rate as $$\lambda$$ph for $$\lambda$$ph < hc/$$\phi$$
B
$$\lambda$$e is approximately halved, if d is doubled
C
$$\lambda$$e decreases with increase in $$\phi$$ and $$\lambda$$ph
D
For large potential difference (V >> $$\phi$$/e), $$\lambda$$e is approximately halved if V is made four times
3
JEE Advanced 2016 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0
Change Language
A frame of the reference that is accelerated with respect to an inertial frame of reference is called a non-inertial frame of reference. A coordinate system fixed on a circular disc rotating about a fixed axis with a constant angular velocity $$\omega$$ is an example of a non-inertial frame of reference. The relationship between the force $$\overrightarrow F $$rot experienced by a particle of mass m moving on the rotating disc and the force $$\overrightarrow F $$in experienced by the particle in an inertial frame of reference is,

$$\overrightarrow F $$rot = $$\overrightarrow F $$in + 2m ($$\overrightarrow v $$rot $$\times$$ $$\overrightarrow \omega $$) + m ($$\overrightarrow \omega $$ $$\times$$ $$\overrightarrow r $$) $$\times$$ $$\overrightarrow \omega $$,

where, vrot is the velocity of the particle in the rotating frame of reference and r is the position vector of the particle with respect to the centre of the disc.

JEE Advanced 2016 Paper 2 Offline Physics - Rotational Motion Question 39 English
Now, consider a smooth slot along a diameter of a disc of radius R rotating counter-clockwise with a constant angular speed $$\omega$$ about its vertical axis through its centre. We assign a coordinate system with the origin at the centre of the disc, the X-axis along the slot, the Y-axis perpendicular to the slot and the Z-axis along the rotation axis ($$\omega$$ = $$\omega$$ $$\widehat k$$). A small block of mass m is gently placed in the slot at r = (R/2)$$\widehat i$$ at t = 0 and is constrained to move only along the slot.

The distance r of the block at time t is
A
$${R \over 2}\cos 2\omega t$$
B
$${R \over 2}\cos \omega t$$
C
$${R \over 2}({e^{\omega t}} + {e^{ - \omega t}})$$
D
$${R \over 2}({e^{2\omega t}} + {e^{ - 2\omega t}})$$
4
JEE Advanced 2016 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0
Change Language
A frame of the reference that is accelerated with respect to an inertial frame of reference is called a non-inertial frame of reference. A coordinate system fixed on a circular disc rotating about a fixed axis with a constant angular velocity $$\omega$$ is an example of a non-inertial frame of reference. The relationship between the force $$\overrightarrow F $$rot experienced by a particle of mass m moving on the rotating disc and the force $$\overrightarrow F $$in experienced by the particle in an inertial frame of reference is,

$$\overrightarrow F $$rot = $$\overrightarrow F $$in + 2m ($$\overrightarrow v $$rot $$\times$$ $$\overrightarrow \omega $$) + m ($$\overrightarrow \omega $$ $$\times$$ $$\overrightarrow r $$) $$\times$$ $$\overrightarrow \omega $$,

where, vrot is the velocity of the particle in the rotating frame of reference and r is the position vector of the particle with respect to the centre of the disc.

JEE Advanced 2016 Paper 2 Offline Physics - Rotational Motion Question 40 English
Now, consider a smooth slot along a diameter of a disc of radius R rotating counter-clockwise with a constant angular speed $$\omega$$ about its vertical axis through its centre. We assign a coordinate system with the origin at the centre of the disc, the X-axis along the slot, the Y-axis perpendicular to the slot and the Z-axis along the rotation axis ($$\omega$$ = $$\omega$$ $$\widehat k$$). A small block of mass m is gently placed in the slot at r = (R/2)$$\widehat i$$ at t = 0 and is constrained to move only along the slot.

The net reaction of the disc on the block is
A
$$m{\omega ^2}R\sin \omega t\widehat j - mg\widehat k$$
B
$${1 \over 2}m{\omega ^2}R({e^{\omega t}} - {e^{ - \omega t}})\widehat j + mg\widehat k$$
C
$${1 \over 2}m{\omega ^2}R({e^{2\omega t}} - {e^{ - 2\omega t}})\widehat j + mg\widehat k$$
D
$$ - m{\omega ^2}R\cos \omega r\widehat j - mg\widehat k$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12