1
JEE Advanced 2016 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let $$a,\,b \in R\,and\,{a^{2\,}} + {b^2} \ne 0$$. Suppose
$$S = \left\{ {Z \in C:Z = {1 \over {a + ibt}}, + \in R,t \ne 0} \right\}$$, where $$i = \sqrt { - 1} $$. Ifz = x + iy and z $$ \in $$ S, then (x, y) lies on
A
the circle with radius $${{1 \over {2a}}}$$and centre $$\left\{ {{1 \over {2a}},\,0} \right\}\,for\,a > 0\,,b \ne \,0$$
B
the circle with radius $$-{{1 \over {2a}}}$$and centre $$\left\{ -{{1 \over {2a}},\,0} \right\}\,for\,a < 0\,,b \ne \,0$$
C
the x-axis for $$a \ne \,\,0,\,b \ne \,0$$
D
the y-axis for $$a = \,\,0,\,b \ne \,0$$
2
JEE Advanced 2016 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
The value of

$$\sum\limits_{k = 1}^{13} {{1 \over {\sin \left( {{\pi \over 4} + {{\left( {k - 1} \right)\pi } \over 6}} \right)\sin \left( {{\pi \over 4} + {{k\pi } \over 6}} \right)}}} $$ is equal to
A
$$3 - \sqrt 3 $$
B
$$2\left( {3 - \sqrt 3 } \right)$$
C
$$2\left( {\sqrt 3 - 1} \right)\,\,\,$$
D
$$2\left( {2 - \sqrt 3 } \right)$$
3
JEE Advanced 2016 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let $$\widehat u = {u_1} \widehat i + {u_2}\widehat j + {u_3}\widehat k$$ be a unit vector in $${{R^3}}$$ and
$$\widehat w = {1 \over {\sqrt 6 }}\left( {\widehat i + \widehat j + 2\widehat k} \right).$$ Given that there exists a vector $${\overrightarrow v }$$ in $${{R^3}}$$ such that $$\left| {\widehat u \times \overrightarrow v } \right| = 1$$ and $$\widehat w.\left( {\widehat u \times \overrightarrow v } \right) = 1.$$ Which of the following statement(s) is (are) correct?
A
There is exactly one choice for such $${\overrightarrow v }$$
B
There are infinitely many choices for such $${\overrightarrow v }$$
C
If $$\widehat u$$ lies in the $$xy$$-plane then $$\left| {{u_1}} \right| = \left| {{u_2}} \right|$$
D
If $$\widehat u$$ lies in the $$xz$$-plane then $$2\left| {{u_1}} \right| = \left| {{u_3}} \right|$$
4
JEE Advanced 2016 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $$P$$ be the image of the point $$(3,1,7)$$ with respect to the plane $$x-y+z=3.$$ Then the equation of the plane passing through $$P$$ and containing the straight line $${x \over 1} = {y \over 2} = {z \over 1}$$ is
A
$$x+y-3z=0$$
B
$$3x+z=0$$
C
$$x-4y+7z=0$$
D
$$2x-y=0$$
JEE Advanced Papers
EXAM MAP