1
JEE Advanced 2016 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Let $$P$$ be the point on the parabola $${y^2} = 4x$$ which is at the shortest distance from the center $$S$$ of the circle $${x^2} + {y^2} - 4x - 16y + 64 = 0$$. Let $$Q$$ be the point on the circle dividing the line segment $$SP$$ internally. Then
A
$$SP = 2\sqrt 5 $$
B
$$SQ:QP = \left( {\sqrt 5 + 1} \right):2$$
C
the $$x$$-intercept of the normal to the parabola at $$P$$ is $$6$$
D
the slope of the tangent to the circle at $$Q$$ is $${1 \over 2}$$
2
JEE Advanced 2016 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0
Let $${F_1}\left( {{x_1},0} \right)$$ and $${F_2}\left( {{x_2},0} \right)$$ for $${{x_1} < 0}$$ and $${{x_2} > 0}$$, be the foci of the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 8} = 1$$. Suppose a parabola having vertex at the origin and focus at $${F_2}$$ intersects the ellipse at point $$M$$ in the first quadrant and at point $$N$$ in the fourth quadrant.

If the tangents to the ellipse at $$M$$ and $$N$$ meet at $$R$$ and the normal to the parabola at $$M$$ meets the $$x$$-axis at $$Q$$, then the ratio of area of the triangle $$MQR$$ to area of the quadrilateral $$M{F_1}N{F_2}$$is

A
$$3:4$$
B
$$4:5$$
C
$$5:8$$
D
$$2:3$$
3
JEE Advanced 2016 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0
Let $${F_1}\left( {{x_1},0} \right)$$ and $${F_2}\left( {{x_2},0} \right)$$ for $${{x_1} < 0}$$ and $${{x_2} > 0}$$, be the foci of the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 8} = 1$$. Suppose a parabola having vertex at the origin and focus at $${F_2}$$ intersects the ellipse at point $$M$$ in the first quadrant and at point $$N$$ in the fourth quadrant.

The orthocentre of the triangle $${F_1}MN$$ is

A
$$\left( { - {9 \over {10}},0} \right)$$
B
$$\left( { {2 \over {3}},0} \right)$$
C
$$\left( { {9 \over {10}},0} \right)$$
D
$$\left( {{2 \over 3},\sqrt 6 } \right)$$
4
JEE Advanced 2016 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Let f: R $$ \to \left( {0,\infty } \right)$$ and g : R $$ \to $$ R be twice differentiable functions such that f'' and g'' are continuous functions on R. Suppose f'$$(2)$$ $$=$$ g$$(2)=0$$, f''$$(2)$$$$ \ne 0$$ and g'$$(2)$$ $$ \ne 0$$. If
$$\mathop {\lim }\limits_{x \to 2} {{f\left( x \right)g\left( x \right)} \over {f'\left( x \right)g'\left( x \right)}} = 1,$$ then
A
$$f$$ has a local minimum at $$x=2$$
B
$$f$$ has a local maximum at $$x=2$$
C
$$f''(2)>f(2)$$
D
$$f(x)-f''(x)=0$$ for at least one $$x \in R$$
JEE Advanced Papers
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12