1
JEE Advanced 2016 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
In a triangle $$\Delta $$$$XYZ$$, let $$x, y, z$$ be the lengths of sides opposite to the angles $$X, Y, Z$$ respectively, and $$2s = x + y + z$$.
If $${{s - x} \over 4} = {{s - y} \over 3} = {{s - z} \over 2}$$ and area of incircle of the triangle $$XYZ$$ is $${{8\pi } \over 3}$$, then
A
area of the triangle $$XYZ$$ is $$6\sqrt 6 $$
B
the radius of circumcircle of the triangle $$XYZ$$ is $${{35} \over 6}\sqrt 6 $$
C
$$\sin {X \over 2}\sin {Y \over 2}\sin {Z \over 2} = {4 \over {35}}$$
D
$${\sin ^2}\left( {{{X + Y} \over 2}} \right) = {3 \over 5}$$
2
JEE Advanced 2016 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let $$f:\mathbb{R} \to \mathbb{R},\,g:\mathbb{R} \to \mathbb{R}$$ and $$h:\mathbb{R} \to \mathbb{R}$$ be differentiable functions such that $$f\left( x \right)= {x^3} + 3x + 2,$$ $$g\left( {f\left( x \right)} \right) = x$$ and $$h\left( {g\left( {g\left( x \right)} \right)} \right) = x$$ for all $$x \in R$$. Then
A
$$g'\left( 2 \right) = {1 \over {15}}$$
B
$$h'\left( 1 \right) = 666$$
C
$$h\left( 0 \right) = 16$$
D
$$h\left( {g\left( 3 \right)} \right) = 36$$
3
JEE Advanced 2016 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
The circle $${C_1}:{x^2} + {y^2} = 3,$$ with centre at $$O$$, intersects the parabola $${x^2} = 2y$$ at the point $$P$$ in the first quadrant, Let the tangent to the circle $${C_1}$$, at $$P$$ touches other two circles $${C_2}$$ and $${C_3}$$ at $${R_2}$$ and $${R_3}$$, respectively. Suppose $${C_2}$$ and $${C_3}$$ have equal radil $${2\sqrt 3 }$$ and centres $${Q_2}$$ and $${Q_3}$$, respectively. If $${Q_2}$$ and $${Q_3}$$ lie on the $$y$$-axis, then
A
$${Q_2}{Q_3} = 12$$
B
$${R_2}{R_3} = 4\sqrt 6 $$
C
area of the triangle $$O{R_2}{R_3}$$ is $$6\sqrt 2 $$
D
area of the triangle $$P{Q_2}{Q_3}$$ is $$4\sqrt 2 $$
4
JEE Advanced 2016 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let RS be the diameter of the circle $${x^2}\, + \,{y^2} = 1$$, where S is the point (1, 0). Let P be a variable point (other than R and S) on the circle and tangents to the circle at S and P meet at the point Q. The normal to the circle at P intersects a line drawn through Q parallel to RS at point E. Then the locus of E passes through the point (s)
A
$$\left( {{1 \over 3}\,,{1 \over {\sqrt 3 }}} \right)$$
B
$$\left( {{1 \over 4}\,,{1 \over 2}} \right)$$
C
$$\left( {{1 \over 3}\,, - {1 \over {\sqrt 3 }}} \right)$$
D
$$\left( {{1 \over 4}\,,-{1 \over 2}} \right)$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12