1
JEE Advanced 2016 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Consider a pyramid $$OPQRS$$ located in the first octant $$\left( {x \ge 0,y \ge 0,z \ge 0} \right)$$ with $$O$$ as origin, and $$OP$$ and $$OR$$ along the $$x$$-axis and the $$y$$-axis, respectively. The base $$OPQR$$ of the pyramid is a square with $$OP=3.$$ The point $$S$$ is directly above the mid-point, $$T$$ of diagonal $$OQ$$ such that $$TS=3.$$ Then
A
the acute angle between $$OQ$$ and $$OS$$ is $${\pi \over 3}$$
B
the equation of the plane containing the triangle $$OQS$$ is $$x-y=0$$
C
the length of the perpendicular from $$P$$ to the plane containing the triangle $$OQS$$ is $${3 \over {\sqrt 2 }}$$
D
the perpendicular distance from $$O$$ to the straight line containing $$RS$$ is $$\sqrt {{{15} \over 2}}$$
2
JEE Advanced 2016 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2

Let $$f:(0,\infty ) \to R$$ be a differentiable function such that $$f'(x) = 2 - {{f(x)} \over x}$$ for all $$x \in (0,\infty )$$ and $$f(1) \ne 1$$. Then

A
$$\mathop {\lim }\limits_{x \to {0^ + }} f'\left( {{1 \over x}} \right) = 1$$
B
$$\mathop {\lim }\limits_{x \to {0^ + }} xf\left( {{1 \over x}} \right) = 2$$
C
$$\mathop {\lim }\limits_{x \to {0^ + }} {x^2}f'(x) = 0$$
D
$$\left| {f(x)} \right| \le 2$$ for all $$x \in (0,2)$$
3
JEE Advanced 2016 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2

Let $$P = \left[ {\matrix{ 3 & { - 1} & { - 2} \cr 2 & 0 & \alpha \cr 3 & { - 5} & 0 \cr } } \right]$$, where $$\alpha$$ $$\in$$ R. Suppose $$Q = [{q_{ij}}]$$ is a matrix such that PQ = kl, where k $$\in$$ R, k $$\ne$$ 0 and I is the identity matrix of order 3. If $${q_{23}} = - {k \over 8}$$ and $$\det (Q) = {{{k^2}} \over 2}$$, then

A
$$\alpha$$ = 0, k = 8
B
$$4\alpha - k + 8 = 0$$
C
$$\det (Padj(Q)) = {2^9}$$
D
$$\det (Qadj(P)) = {2^{13}}$$
4
JEE Advanced 2016 Paper 1 Offline
Numerical
+3
-0

The total number of distinct x $$\in$$ R for which

$$\left| {\matrix{ x & {{x^2}} & {1 + {x^3}} \cr {2x} & {4{x^2}} & {1 + 8{x^3}} \cr {3x} & {9{x^2}} & {1 + 27{x^3}} \cr } } \right| = 10$$ is ______________.

EXAM MAP
Medical
NEET
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12