Let $$f:(0,\infty ) \to R$$ be a differentiable function such that $$f'(x) = 2 - {{f(x)} \over x}$$ for all $$x \in (0,\infty )$$ and $$f(1) \ne 1$$. Then
Let $$P = \left[ {\matrix{ 3 & { - 1} & { - 2} \cr 2 & 0 & \alpha \cr 3 & { - 5} & 0 \cr } } \right]$$, where $$\alpha$$ $$\in$$ R. Suppose $$Q = [{q_{ij}}]$$ is a matrix such that PQ = kl, where k $$\in$$ R, k $$\ne$$ 0 and I is the identity matrix of order 3. If $${q_{23}} = - {k \over 8}$$ and $$\det (Q) = {{{k^2}} \over 2}$$, then
The total number of distinct x $$\in$$ R for which
$$\left| {\matrix{ x & {{x^2}} & {1 + {x^3}} \cr {2x} & {4{x^2}} & {1 + 8{x^3}} \cr {3x} & {9{x^2}} & {1 + 27{x^3}} \cr } } \right| = 10$$ is ______________.
Let $$z = {{ - 1 + \sqrt 3 i} \over 2}$$, where $$i = \sqrt { - 1} $$, and r, s $$\in$$ {1, 2, 3}. Let $$P = \left[ {\matrix{ {{{( - z)}^r}} & {{z^{2s}}} \cr {{z^{2s}}} & {{z^r}} \cr } } \right]$$ and I be the identity matrix of order 2. Then the total number of ordered pairs (r, s) for which P2 = $$-$$I is ____________.