1
JEE Advanced 2016 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Let RS be the diameter of the circle $${x^2}\, + \,{y^2} = 1$$, where S is the point (1, 0). Let P be a variable point (other than R and S) on the circle and tangents to the circle at S and P meet at the point Q. The normal to the circle at P intersects a line drawn through Q parallel to RS at point E. Then the locus of E passes through the point (s)
2
JEE Advanced 2016 Paper 1 Offline
Numerical
+3
-0
Let $$m$$ be the smallest positive integer such that the coefficient of $${x^2}$$ in the expansion of $${\left( {1 + x} \right)^2} + {\left( {1 + x} \right)^3} + ........ + {\left( {1 + x} \right)^{49}} + {\left( {1 + mx} \right)^{50}}\,\,$$ is $$\left( {3n + 1} \right)\,{}^{51}{C_3}$$ for some positive integer $$n$$. Then the value of $$n$$ is
Your input ____
3
JEE Advanced 2016 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
A debate club consists of 6 girls and 4 boys. A team of 4 members is to be select from this club including the selection of a captain (from among these 4 members ) for the team. If the team has to include at most one boy, then the number of ways of selecting the team is
4
JEE Advanced 2016 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Let $$ - {\pi \over 6} < \theta < - {\pi \over {12}}.$$ Suppose $${\alpha _1}$$ and $${\beta_1}$$ are the roots of the equation $${x^2} - 2x\sec \theta + 1 = 0$$ and $${\alpha _2}$$ and $${\beta _2}$$ are the roots of the equation $${x^2} + 2x\,\tan \theta - 1 = 0.$$ $$If\,{\alpha _1} > {\beta _1}$$ and $${\alpha _2} > {\beta _2},$$ then $${\alpha _1} + {\beta _2}$$ equals
Paper analysis
Total Questions
Chemistry
18
Mathematics
18
Physics
18
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978