1
JEE Advanced 2016 Paper 1 Offline
Numerical
+3
-0
A metal is heated in a furnace where a sensor is kept above the metal surface to read the power radiated (P)
by the metal. The sensor has a scale that displays $${\log _2}\left( {{P \over {{P_0}}}} \right)$$, where P0 is a constant. When the metal
surface is at a temperature of 487oC, the sensor shows a value 1. Assume that the emissivity of the metallic
surface remains constant. What is the value displayed by the sensor when the temperature of the metal
surface is raised to 2767oC?
Your input ____
2
JEE Advanced 2016 Paper 1 Offline
Numerical
+3
-0
Consider two solid spheres P and Q each of density 8 gm cm–3 and diameters 1 cm and 0.5 cm, respectively. Sphere P is dropped into a liquid of density 0.8 gm cm–3 and viscosity $$\eta $$ = 3 poiseulles. Sphere Q is dropped into a liquid of density 1.6 gm cm–3 and viscosity $$\eta $$ = 2 poiseulles. The ratio of the terminal velocities of P and Q is
Your input ____
3
JEE Advanced 2016 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
The position vector $$\overrightarrow r $$ of a particle of mass m is given by the following equation
$$$\overrightarrow r \left( t \right) = \alpha {t^3}\widehat i + \beta {t^2}\widehat j,$$$where $$\alpha = {{10} \over 3}m{s^{ - 3}}$$, $$\beta = 5\,m{s^{ - 2}}$$ and m = 0.1 kg. At t = 1 s, which of the following
statement(s) is(are) true about the particle?
4
JEE Advanced 2016 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
A uniform wooden stick of mass 1.6 kg and length $$l$$ rests in an inclined manner on a smooth, vertical wall
of height h ( < $$l$$ ) such that a small portion of the stick extends beyond the wall. The reaction force of the
wall on the stick is perpendicular to the stick. The stick makes an angle of $$30^\circ $$ with the wall and the bottom of the stick is on a rough floor. The reaction of the wall on the stick is equal in magnitude to the reaction of the floor on the stick. The ratio $${h \over l}$$ and the frictional force f at the bottom of the stick are ( g =10 ms-2 )
Paper analysis
Total Questions
Chemistry
18
Mathematics
18
Physics
18
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006
IIT-JEE 2006 Screening
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004 Screening
IIT-JEE 2004
IIT-JEE 2003 Screening
IIT-JEE 2003
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001 Screening
IIT-JEE 2001
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998 Screening
IIT-JEE 1998
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995 Screening
IIT-JEE 1995
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978