1
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Consider the hyperbola $$H:{x^2} - {y^2} = 1$$ and a circle $$S$$ with center $$N\left( {{x_2},0} \right)$$. Suppose that $$H$$ and $$S$$ touch each other at a point $$P\left( {{x_1},{y_1}} \right)$$ with $${{x_1} > 1}$$ and $${{y_1} > 0}$$. The common tangent to $$H$$ and $$S$$ at $$P$$ intersects the $$x$$-axis at point $$M$$. If $$(l, m)$$ is the centroid of the triangle $$PMN$$, then the correct expressions(s) is(are)
2
JEE Advanced 2015 Paper 2 Offline
Numerical
+4
-0
Suppose that the foci of the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 5} = 1$$ are $$\left( {{f_1},0} \right)$$ and $$\left( {{f_2},0} \right)$$ where $${{f_1} > 0}$$ and $${{f_2} < 0}$$. Let $${P_1}$$ and $${P_2}$$ be two parabolas with a common vertex at $$(0,0)$$ and with foci at $$\left( {{f_1},0} \right)$$ and $$\left( 2{{f_2},0} \right)$$, respectively. Let $${T_1}$$ be a tangent to $${P_1}$$ which passes through $$\left( 2{{f_2},0} \right)$$ and $${T_2}$$ be a tangent to $${P_2}$$ which passes through $$\left( {{f_1},0} \right)$$. If $${m_1}$$ is the slope of $${T_1}$$ and $${m_2}$$ is the slope of $${T_2}$$, then the value of $$\left( {{1 \over {m_1^2}} + m_2^2} \right)$$ is
Your input ____
3
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
If $$\alpha $$ $$ = 3{\sin ^{ - 1}}\left( {{6 \over {11}}} \right)$$ and $$\beta = 3{\cos ^{ - 1}}\left( {{4 \over 9}} \right),$$ where the inverse trigonimetric functions take only the principal values, then the correct options(s) is (are)
4
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $$f, g :$$ $$\left[ { - 1,2} \right] \to R$$ be continuous functions which are twice differentiable on the interval $$(-1, 2)$$. Let the values of f and g at the points $$-1, 0$$ and $$2$$ be as given in the following table:
X = -1 | X = 0 | X = 2 | |
---|---|---|---|
f(x) | 3 | 6 | 0 |
g(x) | 0 | 1 | -1 |
In each of the intervals $$(-1, 0)$$ and $$(0, 2)$$ the function $$(f-3g)''$$ never vanishes. Then the correct statement(s) is (are)
Paper analysis
Total Questions
Chemistry
20
Mathematics
20
Physics
20
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006
IIT-JEE 2006 Screening
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004 Screening
IIT-JEE 2004
IIT-JEE 2003 Screening
IIT-JEE 2003
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001 Screening
IIT-JEE 2001
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998 Screening
IIT-JEE 1998
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995 Screening
IIT-JEE 1995
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978