1
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Consider the hyperbola $$H:{x^2} - {y^2} = 1$$ and a circle $$S$$ with center $$N\left( {{x_2},0} \right)$$. Suppose that $$H$$ and $$S$$ touch each other at a point $$P\left( {{x_1},{y_1}} \right)$$ with $${{x_1} > 1}$$ and $${{y_1} > 0}$$. The common tangent to $$H$$ and $$S$$ at $$P$$ intersects the $$x$$-axis at point $$M$$. If $$(l, m)$$ is the centroid of the triangle $$PMN$$, then the correct expressions(s) is(are)
A
$${{dl} \over {d{x_1}}} = 1 - {1 \over {3x_1^2}}$$ for $${x_1} > 1$$
B
$${{dm} \over {d{x_1}}} = {{{x_1}} \over {3\left( {\sqrt {x_1^2 - 1} } \right)}}$$ for $${x_1} > 1$$
C
$${{dl} \over {d{x_1}}} = 1 + {1 \over {3x_1^2}}$$ for $${x_1} > 1$$
D
$${{dm} \over {d{y_1}}} = {1 \over 3}$$ for $${y_1} > 0$$
2
JEE Advanced 2015 Paper 2 Offline
Numerical
+4
-0
Suppose that the foci of the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 5} = 1$$ are $$\left( {{f_1},0} \right)$$ and $$\left( {{f_2},0} \right)$$ where $${{f_1} > 0}$$ and $${{f_2} < 0}$$. Let $${P_1}$$ and $${P_2}$$ be two parabolas with a common vertex at $$(0,0)$$ and with foci at $$\left( {{f_1},0} \right)$$ and $$\left( 2{{f_2},0} \right)$$, respectively. Let $${T_1}$$ be a tangent to $${P_1}$$ which passes through $$\left( 2{{f_2},0} \right)$$ and $${T_2}$$ be a tangent to $${P_2}$$ which passes through $$\left( {{f_1},0} \right)$$. If $${m_1}$$ is the slope of $${T_1}$$ and $${m_2}$$ is the slope of $${T_2}$$, then the value of $$\left( {{1 \over {m_1^2}} + m_2^2} \right)$$ is
Your input ____
3
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
If $$\alpha $$ $$ = 3{\sin ^{ - 1}}\left( {{6 \over {11}}} \right)$$ and $$\beta = 3{\cos ^{ - 1}}\left( {{4 \over 9}} \right),$$ where the inverse trigonimetric functions take only the principal values, then the correct options(s) is (are)
A
$$cos\beta > 0$$
B
$$\sin \beta < 0$$
C
$$\cos \left( {\alpha + \beta } \right) > 0$$
D
$$\cos \alpha < 0$$
4
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $$f, g :$$ $$\left[ { - 1,2} \right] \to R$$ be continuous functions which are twice differentiable on the interval $$(-1, 2)$$. Let the values of f and g at the points $$-1, 0$$ and $$2$$ be as given in the following table:
X = -1 X = 0 X = 2
f(x) 3 6 0
g(x) 0 1 -1

In each of the intervals $$(-1, 0)$$ and $$(0, 2)$$ the function $$(f-3g)''$$ never vanishes. Then the correct statement(s) is (are)

A
$$f'\left( x \right) - 3g'\left( x \right) = 0$$ has exactly three solutions in $$\left( { - 1,0} \right) \cup \left( {0,2} \right)$$
B
$$f'\left( x \right) - 3g'\left( x \right) = 0$$ has exactly one solution in $$(-1, 0)$$
C
$$f'\left( x \right) - 3g'\left( x \right) = 0$$ has exactly one solution in $$(0, 2)$$
D
$$f'\left( x \right) - 3g'\left( x \right) = 0$$ has exactly two solutions in $$(-1, 0)$$ and exactly two solutions in $$(0, 2)$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12