1
JEE Advanced 2015 Paper 2 Offline
Numerical
+4
-0
Suppose that the foci of the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 5} = 1$$ are $$\left( {{f_1},0} \right)$$ and $$\left( {{f_2},0} \right)$$ where $${{f_1} > 0}$$ and $${{f_2} < 0}$$. Let $${P_1}$$ and $${P_2}$$ be two parabolas with a common vertex at $$(0,0)$$ and with foci at $$\left( {{f_1},0} \right)$$ and $$\left( 2{{f_2},0} \right)$$, respectively. Let $${T_1}$$ be a tangent to $${P_1}$$ which passes through $$\left( 2{{f_2},0} \right)$$ and $${T_2}$$ be a tangent to $${P_2}$$ which passes through $$\left( {{f_1},0} \right)$$. If $${m_1}$$ is the slope of $${T_1}$$ and $${m_2}$$ is the slope of $${T_2}$$, then the value of $$\left( {{1 \over {m_1^2}} + m_2^2} \right)$$ is
Your input ____
2
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
If $$\alpha $$ $$ = 3{\sin ^{ - 1}}\left( {{6 \over {11}}} \right)$$ and $$\beta = 3{\cos ^{ - 1}}\left( {{4 \over 9}} \right),$$ where the inverse trigonimetric functions take only the principal values, then the correct options(s) is (are)
A
$$cos\beta > 0$$
B
$$\sin \beta < 0$$
C
$$\cos \left( {\alpha + \beta } \right) > 0$$
D
$$\cos \alpha < 0$$
3
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $$f\left( x \right) = 7{\tan ^8}x + 7{\tan ^6}x - 3{\tan ^4}x - 3{\tan ^2}x$$ for all $$x \in \left( { - {\pi \over 2},{\pi \over 2}} \right).$$
Then the correct expression(s) is (are)
A
$$\int\limits_0^{\pi /4} {xf\left( x \right)dx = {1 \over {12}}} $$
B
$$\int\limits_0^{\pi /4} {f\left( x \right)dx = 0} $$
C
$$\int\limits_0^{\pi /4} {xf\left( x \right)dx = {1 \over {6}}} $$
D
$$\int\limits_0^{\pi /4} {f\left( x \right)dx = 1} $$
4
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
The option(s) with the values of a and $$L$$ that satisfy the following equation is (are) $$${{\int\limits_0^{4\pi } {{e^t}\left( {{{\sin }^6}at + {{\cos }^4}at} \right)dt} } \over {\int\limits_0^\pi {{e^t}\left( {{{\sin }^6}at + {{\cos }^4}at} \right)dt} }} = L?$$$
A
$$a = 2,L = {{{e^{4\pi }} - 1} \over {{e^\pi } - 1}}$$
B
$$a = 2,L = {{{e^{4\pi }} + 1} \over {{e^\pi } + 1}}$$
C
$$a = 4,L = {{{e^{4\pi }} - 1} \over {{e^\pi } - 1}}$$
D
$$a = 4,L = {{{e^{4\pi }} + 1} \over {{e^\pi } + 1}}$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12