1
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $${n_1}$$ and $${n_2}$$ be the number of red and black balls, respectively, in box $${\rm I}$$. Let $${n_3}$$ and $${n_4}$$ be the number of red and black balls, respectively, in box $${\rm I}{\rm I}.$$

A ball is drawn at random from box $${\rm I}$$ and transferred to box $${\rm I}$$$${\rm I}.$$ If the probability of drawing a red ball from box $${\rm I},$$ after this transfer, is $${1 \over 3},$$ then the correct option(s) with the possible values of $${n_1}$$ and $${n_2}$$ is(are)

A
$${n_1} = 4$$ and $${n_2} = 6$$
B
$${n_1} = 2$$ and $${n_2} = 3$$
C
$${n_1} = 10$$ and $${n_2} = 20$$
D
$${n_1} = 3$$ and $${n_2} = 6$$
2
JEE Advanced 2015 Paper 2 Offline
Numerical
+4
-0
Let $$f:R \to R$$ be a continuous odd function, which vanishes exactly at one point and $$f\left( 1 \right) = {1 \over {2.}}$$ Suppose that $$F\left( x \right) = \int\limits_{ - 1}^x {f\left( t \right)dt} $$ for all $$x \in \,\,\left[ { - 1,2} \right]$$ and $$G(x)=$$ $$\int\limits_{ - 1}^x {t\left| {f\left( {f\left( t \right)} \right)} \right|} dt$$ for all $$x \in \,\,\left[ { - 1,2} \right].$$ If $$\mathop {\lim }\limits_{x \to 1} {{F\left( x \right)} \over {G\left( x \right)}} = {1 \over {14}},$$ then the value of $$f\left( {{1 \over 2}} \right)$$ is
Your input ____
3
JEE Advanced 2015 Paper 2 Offline
Numerical
+4
-0
Suppose that all the terms of an arithmetic progression (A.P) are natural numbers. If the ratio of the sum of the first seven terms to the sum of the first eleven terms is 6 : 11 and the seventh term lies in between 130 and 140, then the common difference of this A.P. is
Your input ____
4
JEE Advanced 2015 Paper 2 Offline
Numerical
+4
-0
The coefficient of $${x^9}$$ in the expansion of (1 + x) (1 + $${x^2)}$$ (1 + $${x^3}$$) ....$$(1 + {x^{100}})$$ is
Your input ____
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12