1
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $$F:R \to R$$ be a thrice differentiable function. Suppose that
$$F\left( 1 \right) = 0,F\left( 3 \right) = - 4$$ and $$F\left( x \right) < 0$$ for all $$x \in \left( {{1 \over 2},3} \right).$$ Let $$f\left( x \right) = xF\left( x \right)$$ for all $$x \in R.$$

If $$\int_1^3 {{x^2}F'\left( x \right)dx = - 12}$$ and $$\int_1^3 {{x^3}F''\left( x \right)dx = 40,}$$ then the correct expression(s) is (are)

A
$$9f'\left( 3 \right) + f'\left( 1 \right) - 32 = 0$$
B
$$\int_1^3 {f\left( x \right)dx = 12}$$
C
$$9f'\left( 3 \right) - f'\left( 1 \right) + 32 = 0$$
D
$$\int_1^3 {f\left( x \right)dx = -12}$$
2
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $$F:R \to R$$ be a thrice differentiable function. Suppose that
$$F\left( 1 \right) = 0,F\left( 3 \right) = - 4$$ and $$F'\left( x \right) < 0$$ for all $$x \in \left( {{1 \over 2},3} \right).$$ Let $$f\left( x \right) = xF\left( x \right)$$ for all $$x \in R.$$

The correct statement(s) is (are)

A
$$f'\left( 1 \right) < 0$$
B
$$f\left( 2 \right) < 0$$
C
$$f'\left( x \right) \ne 0$$ for any $$x \in \left( {1,3} \right)$$
D
$$f'\left( x \right) = 0$$ for some $$x \in \left( {1,3} \right)$$
3
JEE Advanced 2015 Paper 2 Offline
Numerical
+4
-0
If $$\alpha = \int\limits_0^1 {\left( {{e^{9x + 3{{\tan }^{ - 1}}x}}} \right)\left( {{{12 + 9{x^2}} \over {1 + {x^2}}}} \right)} dx$$ where $${\tan ^{ - 1}}x$$ takes only principal values, then the value of $$\left( {{{\log }_e}\left| {1 + \alpha } \right| - {{3\pi } \over 4}} \right)$$ is
4
JEE Advanced 2015 Paper 2 Offline
Numerical
+4
-0
Let $$f:R \to R$$ be a continuous odd function, which vanishes exactly at one point and $$f\left( 1 \right) = {1 \over {2.}}$$ Suppose that $$F\left( x \right) = \int\limits_{ - 1}^x {f\left( t \right)dt}$$ for all $$x \in \,\,\left[ { - 1,2} \right]$$ and $$G(x)=$$ $$\int\limits_{ - 1}^x {t\left| {f\left( {f\left( t \right)} \right)} \right|} dt$$ for all $$x \in \,\,\left[ { - 1,2} \right].$$ If $$\mathop {\lim }\limits_{x \to 1} {{F\left( x \right)} \over {G\left( x \right)}} = {1 \over {14}},$$ then the value of $$f\left( {{1 \over 2}} \right)$$ is