1
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $$F:R \to R$$ be a thrice differentiable function. Suppose that
$$F\left( 1 \right) = 0,F\left( 3 \right) = - 4$$ and $$F\left( x \right) < 0$$ for all $$x \in \left( {{1 \over 2},3} \right).$$ Let $$f\left( x \right) = xF\left( x \right)$$ for all $$x \in R.$$

If $$\int_1^3 {{x^2}F'\left( x \right)dx = - 12} $$ and $$\int_1^3 {{x^3}F''\left( x \right)dx = 40,} $$ then the correct expression(s) is (are)

A
$$9f'\left( 3 \right) + f'\left( 1 \right) - 32 = 0$$
B
$$\int_1^3 {f\left( x \right)dx = 12} $$
C
$$9f'\left( 3 \right) - f'\left( 1 \right) + 32 = 0$$
D
$$\int_1^3 {f\left( x \right)dx = -12} $$
2
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $$F:R \to R$$ be a thrice differentiable function. Suppose that
$$F\left( 1 \right) = 0,F\left( 3 \right) = - 4$$ and $$F'\left( x \right) < 0$$ for all $$x \in \left( {{1 \over 2},3} \right).$$ Let $$f\left( x \right) = xF\left( x \right)$$ for all $$x \in R.$$

The correct statement(s) is (are)

A
$$f'\left( 1 \right) < 0$$
B
$$f\left( 2 \right) < 0$$
C
$$f'\left( x \right) \ne 0$$ for any $$x \in \left( {1,3} \right)$$
D
$$f'\left( x \right) = 0$$ for some $$x \in \left( {1,3} \right)$$
3
JEE Advanced 2015 Paper 2 Offline
Numerical
+4
-0
Let $$f:R \to R$$ be a continuous odd function, which vanishes exactly at one point and $$f\left( 1 \right) = {1 \over {2.}}$$ Suppose that $$F\left( x \right) = \int\limits_{ - 1}^x {f\left( t \right)dt} $$ for all $$x \in \,\,\left[ { - 1,2} \right]$$ and $$G(x)=$$ $$\int\limits_{ - 1}^x {t\left| {f\left( {f\left( t \right)} \right)} \right|} dt$$ for all $$x \in \,\,\left[ { - 1,2} \right].$$ If $$\mathop {\lim }\limits_{x \to 1} {{F\left( x \right)} \over {G\left( x \right)}} = {1 \over {14}},$$ then the value of $$f\left( {{1 \over 2}} \right)$$ is
Your input ____
4
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $$f, g :$$ $$\left[ { - 1,2} \right] \to R$$ be continuous functions which are twice differentiable on the interval $$(-1, 2)$$. Let the values of f and g at the points $$-1, 0$$ and $$2$$ be as given in the following table:
X = -1 X = 0 X = 2
f(x) 3 6 0
g(x) 0 1 -1

In each of the intervals $$(-1, 0)$$ and $$(0, 2)$$ the function $$(f-3g)''$$ never vanishes. Then the correct statement(s) is (are)

A
$$f'\left( x \right) - 3g'\left( x \right) = 0$$ has exactly three solutions in $$\left( { - 1,0} \right) \cup \left( {0,2} \right)$$
B
$$f'\left( x \right) - 3g'\left( x \right) = 0$$ has exactly one solution in $$(-1, 0)$$
C
$$f'\left( x \right) - 3g'\left( x \right) = 0$$ has exactly one solution in $$(0, 2)$$
D
$$f'\left( x \right) - 3g'\left( x \right) = 0$$ has exactly two solutions in $$(-1, 0)$$ and exactly two solutions in $$(0, 2)$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12