1
JEE Advanced 2015 Paper 2 Offline
Numerical
+4
-0
For any integer k, let $${a_k} = \cos \left( {{{k\pi } \over 7}} \right) + i\,\,\sin \left( {{{k\pi } \over 7}} \right)$$, where $$i = \sqrt { - 1} \,$$. The value of the expression $${{\sum\limits_{k = 1}^{12} {\left| {{\alpha _{k + 1}} - {a_k}} \right|} } \over {\sum\limits_{k = 1}^3 {\left| {{\alpha _{4k - 1}} - {\alpha _{4k - 2}}} \right|} }}$$ is
Your input ____
2
JEE Advanced 2015 Paper 2 Offline
Numerical
+4
-0
Suppose that $$\overrightarrow p ,\overrightarrow q $$ and $$\overrightarrow r $$ are three non-coplanar vectors in $${R^3}$$. Let the components of a vector $$\overrightarrow s $$ along $$\overrightarrow p ,$$ $$\overrightarrow q $$ and $$\overrightarrow r $$ be $$4, 3$$ and $$5,$$ respectively. If the components of this vector $$\overrightarrow s $$ along $$\left( { - \overrightarrow p + \overrightarrow q + \overrightarrow r } \right),\left( {\overrightarrow p - \overrightarrow q + \overrightarrow r } \right)$$ and $$\left( { - \overrightarrow p - \overrightarrow q + \overrightarrow r } \right)$$ are $$x, y$$ and $$z,$$ respectively, then the value of $$2x+y+z$$ is
Your input ____
3
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $${n_1}$$ and $${n_2}$$ be the number of red and black balls, respectively, in box $${\rm I}$$. Let $${n_3}$$ and $${n_4}$$ be the number of red and black balls, respectively, in box $${\rm I}{\rm I}.$$

A ball is drawn at random from box $${\rm I}$$ and transferred to box $${\rm I}$$$${\rm I}.$$ If the probability of drawing a red ball from box $${\rm I},$$ after this transfer, is $${1 \over 3},$$ then the correct option(s) with the possible values of $${n_1}$$ and $${n_2}$$ is(are)

A
$${n_1} = 4$$ and $${n_2} = 6$$
B
$${n_1} = 2$$ and $${n_2} = 3$$
C
$${n_1} = 10$$ and $${n_2} = 20$$
D
$${n_1} = 3$$ and $${n_2} = 6$$
4
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $${n_1}$$ and $${n_2}$$ be the number of red and black balls, respectively, in box $${\rm I}$$. Let $${n_3}$$ and $${n_4}$$ be the number of red and black balls, respectively, in box $${\rm I}{\rm I}.$$

One of the two boxes, box $${\rm I}$$ and box $${\rm I}{\rm I},$$ was selected at random and a ball was drawn randomly out of this box. The ball was found to be red. If the probability that this red ball was drawn from box $${\rm I}{\rm I}$$ is $${1 \over 3},$$ then the correct option(s) with the possible values of $${n_1}$$ $${n_2},$$ $${n_3}$$ and $${n_4}$$ is (are)

A
$${n_1} = 3,{n_2} = 3,{n_3} = 5,{n_4} = 15$$
B
$${n_1} = 3,{n_2} = 6,{n_3} = 10,{n_4} = 50$$
C
$${n_1} = 8,{n_2} = 6,{n_3} = 5,{n_4} = 20$$
D
$${n_1} = 6,{n_2} = 12,{n_3} = 5,{n_4} = 20$$
JEE Advanced Papers
EXAM MAP