1
JEE Advanced 2015 Paper 2 Offline
Numerical
+4
-0
For any integer k, let $${a_k} = \cos \left( {{{k\pi } \over 7}} \right) + i\,\,\sin \left( {{{k\pi } \over 7}} \right)$$, where $$i = \sqrt { - 1} \,$$. The value of the expression $${{\sum\limits_{k = 1}^{12} {\left| {{\alpha _{k + 1}} - {a_k}} \right|} } \over {\sum\limits_{k = 1}^3 {\left| {{\alpha _{4k - 1}} - {\alpha _{4k - 2}}} \right|} }}$$ is
Your input ____
2
JEE Advanced 2015 Paper 2 Offline
Numerical
+4
-0
Suppose that $$\overrightarrow p ,\overrightarrow q $$ and $$\overrightarrow r $$ are three non-coplanar vectors in $${R^3}$$. Let the components of a vector $$\overrightarrow s $$ along $$\overrightarrow p ,$$ $$\overrightarrow q $$ and $$\overrightarrow r $$ be $$4, 3$$ and $$5,$$ respectively. If the components of this vector $$\overrightarrow s $$ along $$\left( { - \overrightarrow p + \overrightarrow q + \overrightarrow r } \right),\left( {\overrightarrow p - \overrightarrow q + \overrightarrow r } \right)$$ and $$\left( { - \overrightarrow p - \overrightarrow q + \overrightarrow r } \right)$$ are $$x, y$$ and $$z,$$ respectively, then the value of $$2x+y+z$$ is
Your input ____
3
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $${n_1}$$ and $${n_2}$$ be the number of red and black balls, respectively, in box $${\rm I}$$. Let $${n_3}$$ and $${n_4}$$ be the number of red and black balls, respectively, in box $${\rm I}{\rm I}.$$

One of the two boxes, box $${\rm I}$$ and box $${\rm I}{\rm I},$$ was selected at random and a ball was drawn randomly out of this box. The ball was found to be red. If the probability that this red ball was drawn from box $${\rm I}{\rm I}$$ is $${1 \over 3},$$ then the correct option(s) with the possible values of $${n_1}$$ $${n_2},$$ $${n_3}$$ and $${n_4}$$ is (are)

A
$${n_1} = 3,{n_2} = 3,{n_3} = 5,{n_4} = 15$$
B
$${n_1} = 3,{n_2} = 6,{n_3} = 10,{n_4} = 50$$
C
$${n_1} = 8,{n_2} = 6,{n_3} = 5,{n_4} = 20$$
D
$${n_1} = 6,{n_2} = 12,{n_3} = 5,{n_4} = 20$$
4
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $${n_1}$$ and $${n_2}$$ be the number of red and black balls, respectively, in box $${\rm I}$$. Let $${n_3}$$ and $${n_4}$$ be the number of red and black balls, respectively, in box $${\rm I}{\rm I}.$$

A ball is drawn at random from box $${\rm I}$$ and transferred to box $${\rm I}$$$${\rm I}.$$ If the probability of drawing a red ball from box $${\rm I},$$ after this transfer, is $${1 \over 3},$$ then the correct option(s) with the possible values of $${n_1}$$ and $${n_2}$$ is(are)

A
$${n_1} = 4$$ and $${n_2} = 6$$
B
$${n_1} = 2$$ and $${n_2} = 3$$
C
$${n_1} = 10$$ and $${n_2} = 20$$
D
$${n_1} = 3$$ and $${n_2} = 6$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12