1

JEE Advanced 2015 Paper 2 Offline

Numerical

+4

-0

Suppose that $$\overrightarrow p ,\overrightarrow q $$ and $$\overrightarrow r $$ are three non-coplanar vectors in $${R^3}$$. Let the components of a vector $$\overrightarrow s $$ along $$\overrightarrow p ,$$ $$\overrightarrow q $$ and $$\overrightarrow r $$ be $$4, 3$$ and $$5,$$ respectively. If the components of this vector $$\overrightarrow s $$ along $$\left( { - \overrightarrow p + \overrightarrow q + \overrightarrow r } \right),\left( {\overrightarrow p - \overrightarrow q + \overrightarrow r } \right)$$ and $$\left( { - \overrightarrow p - \overrightarrow q + \overrightarrow r } \right)$$ are $$x, y$$ and $$z,$$ respectively, then the value of $$2x+y+z$$ is

Your input ____

2

JEE Advanced 2015 Paper 2 Offline

Numerical

+3

-1

Let m and n be two positive integers greater than 1. If
$$$\mathop {\lim }\limits_{\alpha \to 0} \left( {{{{e^{\cos \left( {{\alpha ^n}} \right)}} - e} \over {{\alpha ^m}}}} \right) = - \left( {{e \over 2}} \right)$$$
then the value of $${m \over n}$$ is _________.

Your input ____

3

JEE Advanced 2015 Paper 2 Offline

MCQ (More than One Correct Answer)

+4

-2

In terms of potential difference V, electric current I, permittivity $${\varepsilon _0}$$, permeability $${\mu _0}$$ and speed of light c,
the dimensionally correct equation(s) is(are) :

4

JEE Advanced 2015 Paper 2 Offline

Numerical

+4

-0

The energy of a system as a function of time t is given as E(t) = $${A^2}\exp \left( { - \alpha t} \right)$$, where $$\alpha = 0.2\,{s^{ - 1}}$$. The
measurement of A has an error of 1.25 %. If the error in the measurement of time is 1.50 %, the percentage
error in the value of E(t) at t = 5 s is

Your input ____

Paper analysis

Total Questions

Chemistry

20

Mathematics

20

Physics

20

More papers of JEE Advanced

JEE Advanced 2023 Paper 2 Online

JEE Advanced 2023 Paper 1 Online

JEE Advanced 2022 Paper 2 Online

JEE Advanced 2022 Paper 1 Online

JEE Advanced 2021 Paper 2 Online

JEE Advanced 2021 Paper 1 Online

JEE Advanced 2020 Paper 2 Offline

JEE Advanced 2020 Paper 1 Offline

JEE Advanced 2019 Paper 2 Offline

JEE Advanced 2019 Paper 1 Offline

JEE Advanced 2018 Paper 2 Offline

JEE Advanced 2018 Paper 1 Offline

JEE Advanced 2017 Paper 2 Offline

JEE Advanced 2017 Paper 1 Offline

JEE Advanced 2016 Paper 2 Offline

JEE Advanced 2016 Paper 1 Offline

JEE Advanced 2015 Paper 2 Offline

JEE Advanced 2015 Paper 1 Offline

JEE Advanced 2014 Paper 2 Offline

JEE Advanced 2014 Paper 1 Offline

JEE Advanced 2013 Paper 2 Offline

JEE Advanced 2013 Paper 1 Offline

IIT-JEE 2012 Paper 2 Offline

IIT-JEE 2012 Paper 1 Offline

IIT-JEE 2011 Paper 1 Offline

IIT-JEE 2011 Paper 2 Offline

IIT-JEE 2010 Paper 1 Offline

IIT-JEE 2010 Paper 2 Offline

IIT-JEE 2009 Paper 2 Offline

IIT-JEE 2009 Paper 1 Offline

IIT-JEE 2008 Paper 2 Offline

IIT-JEE 2008 Paper 1 Offline

IIT-JEE 2007

IIT-JEE 2007 Paper 2 Offline

IIT-JEE 2006

IIT-JEE 2006 Screening

IIT-JEE 2005 Screening

IIT-JEE 2005

IIT-JEE 2004

IIT-JEE 2004 Screening

IIT-JEE 2003

IIT-JEE 2003 Screening

IIT-JEE 2002

IIT-JEE 2002 Screening

IIT-JEE 2001

IIT-JEE 2001 Screening

IIT-JEE 2000

IIT-JEE 2000 Screening

IIT-JEE 1999

IIT-JEE 1999 Screening

IIT-JEE 1998

IIT-JEE 1998 Screening

IIT-JEE 1997

IIT-JEE 1996

IIT-JEE 1995

IIT-JEE 1995 Screening

IIT-JEE 1994

IIT-JEE 1993

IIT-JEE 1992

IIT-JEE 1991

IIT-JEE 1990

IIT-JEE 1989

IIT-JEE 1988

IIT-JEE 1987

IIT-JEE 1986

IIT-JEE 1985

IIT-JEE 1984

IIT-JEE 1983

IIT-JEE 1982

IIT-JEE 1981

IIT-JEE 1980

IIT-JEE 1979

IIT-JEE 1978

JEE Advanced
Papers

2020

2019

2017

2016

1997

1996

1994

1993

1992

1991

1990

1989

1988

1987

1986

1985

1984

1983

1982

1981

1980

1979

1978