1
IIT-JEE 2010 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$\omega $$ be a complex cube root of unity with $$\omega \ne 1.$$ A fair die is thrown three times. If $${r_1},$$ $${r_2}$$ and $${r_3}$$ are the numbers obtained on the die, then the probability that $${\omega ^{{r_1}}} + {\omega ^{{r_2}}} + {\omega ^{{r_3}}} = 0$$ is
A
$${1 \over 18}$$
B
$${1 \over 9}$$
C
$${2 \over 9}$$
D
$${1 \over 36}$$
2
IIT-JEE 2010 Paper 1 Offline
Numerical
+3
-0
For any real number $$x,$$ let $$\left[ x \right]$$ denote the largest integer less than or equal to $$x.$$ Let $$f$$ be a real valued function defined on the interval $$\left[ { - 10,10} \right]$$ by $$$f\left( x \right) = \left\{ {\matrix{ {x - \left[ x \right]} & {if\left[ x \right]is\,odd,} \cr {1 + \left[ x \right] - x} & {if\left[ x \right]is\,even} \cr } } \right.$$$

Then the value of $${{{\pi ^2}} \over {10}}\int\limits_{ - 10}^{10} {f\left( x \right)\cos \,\pi x\,dx} $$ is

Your input ____
3
IIT-JEE 2010 Paper 1 Offline
MCQ (More than One Correct Answer)
+3
-0
Let $$f$$ be a real-valued function defined on the interval $$\left( {0,\infty } \right)$$
by $$\,f\left( x \right) = \ln x + \int\limits_0^x {\sqrt {1 + \sin t\,} dt.} $$ then which of the following
statement(s) is (are) true?
A
$$f''(x)$$ exists for all $$x \in \left( {0,\infty } \right)$$
B
$$f'(x)$$ exists for all $$x \in \left( {0,\infty } \right)$$ and $$f'$$ is continuous on $$\left( {0,\infty } \right)$$, but not differentiable on $$\left( {0,\infty } \right)$$
C
there exists $$\,\,\alpha > 1$$ such that $$\left| {f'\left( x \right)} \right| < \left| {f\left( x \right)} \right|$$ for all $$x \in \left( {\alpha ,\infty } \right)\,$$
D
there exists $$\beta > 0$$ such that $$\left| {f\left( x \right)} \right| + \left| {f'\left( x \right)} \right| \le \beta $$ for all $$x \in \left( {0,\infty } \right)$$
4
IIT-JEE 2010 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
The value of $$\int\limits_0^1 {{{{x^4}{{\left( {1 - x} \right)}^4}} \over {1 + {x^2}}}dx} $$ is (are)
A
$${{22} \over 7} - \pi $$
B
$${2 \over {105}}$$
C
$$0$$
D
$${{71} \over {15}} - {{3\pi } \over 2}$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12