1
IIT-JEE 2010 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
Equation of the plane containing the straight line $${x \over 2} = {y \over 3} = {z \over 4}$$ and perpendicular to the plane containing the straight lines $${x \over 3} = {y \over 4} = {z \over 2}$$ and $${x \over 4} = {y \over 2} = {z \over 3}$$ is
2
IIT-JEE 2010 Paper 1 Offline
Numerical
+4
-0
If $$\overrightarrow a $$ and $$\overrightarrow b $$ are vectors in space given by $$\overrightarrow a = {{\widehat i - 2\widehat j} \over {\sqrt 5 }}$$ and $$\overrightarrow b = {{2\widehat i + \widehat j + 3\widehat k} \over {\sqrt {14} }},$$ then find the value of $$\,\left( {2\overrightarrow a + \overrightarrow b } \right).\left[ {\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow a - 2\overrightarrow b } \right)} \right].$$
Your input ____
3
IIT-JEE 2010 Paper 1 Offline
Numerical
+4
-0
If the distance between the plane $$Ax-2y+z=d$$ and the plane containing the lines $${{x - 1} \over 2} = {{y - 2} \over 3} = {{z - 3} \over 4}$$ and $${{x - 2} \over 3} = {{y - 3} \over 4} = {{z - 4} \over 5}\,$$ is $$\sqrt 6 \,\,,$$ then find $$\left| d \right|.$$
Your input ____
4
IIT-JEE 2010 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$ABC$$ be a triangle such that $$\angle ACB = {\pi \over 6}$$ and let $$a, b$$ and $$c$$ denote the lengths of the sides opposite to $$A$$, $$B$$ and $$C$$ respectively. The value(s) of $$x$$ for which $$a = {x^2} + x + 1,\,\,\,b = {x^2} - 1\,\,\,$$ and $$c = 2x + 1$$ is (are)
Paper analysis
Total Questions
Chemistry
28
Mathematics
22
Physics
28
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978