Let $f, g$ and $h$ be real valued functions defined on the interval $[0,1]$ by
$f(x)=e^{x^2}+e^{-x^2}$,
$g(x)=x e^{x^2}+e^{-x^2}$
and $h(x)=x^2 e^{x^2}+e^{-x^2}$.
If $a, b$ and $c$ denote, respectively, the absolute maximum of $f, g$ and $h$ on $[0,1]$, then :
Let $z_1$ and $z_2$ be two distinct complex numbers let $z=(1-t) z_1+t z_2$ for some real number t with $0 < t < 1$.
If $\operatorname{Arg}(w)$ denotes the principal argument of a nonzero complex number $w$, then :
Let $p$ be an odd prime number and $T_p$ be the following set of $2 \times 2$ matrices :
$$ \mathrm{T}_{\mathrm{p}}=\left\{\mathrm{A}=\left[\begin{array}{ll} a & b \\ c & a \end{array}\right]: a, b, c \in\{0,1,2, \ldots, p-1\}\right\} $$
Let $p$ be an odd prime number and $T_p$ be the following set of $2 \times 2$ matrices :
$$ \mathrm{T}_{\mathrm{p}}=\left\{\mathrm{A}=\left[\begin{array}{ll} a & b \\ c & a \end{array}\right]: a, b, c \in\{0,1,2, \ldots, p-1\}\right\} $$
The number of A in $\mathrm{T}_p$ such that the trace of A is not divisible by $p$ but $\operatorname{det}(\mathrm{A})$ is divisible by $p$ is
[Note : The trace of a matrix is the sum of its diagonal entries.]