1
IIT-JEE 2010 Paper 1 Offline
MCQ (More than One Correct Answer)
+3
-0

Let $z_1$ and $z_2$ be two distinct complex numbers let $z=(1-t) z_1+t z_2$ for some real number t with $0 < t < 1$.

If $\operatorname{Arg}(w)$ denotes the principal argument of a nonzero complex number $w$, then :

A
$\left|z-z_1\right|+\left|z-z_2\right|=\left|z_1-z_2\right|$
B
$\operatorname{Arg}\left(z-z_1\right)=\operatorname{Arg}\left(z-z_2\right)$
C
$\left|\begin{array}{cc}z-z_1 & \bar{z}-\bar{z}_1 \\ z_2-z_1 & \bar{z}_2-\bar{z}_1\end{array}\right|=0$
D
$\operatorname{Arg}\left(z-z_1\right)=\operatorname{Arg}\left(z_2-z_1\right)$
2
IIT-JEE 2010 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Let $p$ be an odd prime number and $T_p$ be the following set of $2 \times 2$ matrices :

$$ \mathrm{T}_{\mathrm{p}}=\left\{\mathrm{A}=\left[\begin{array}{ll} a & b \\ c & a \end{array}\right]: a, b, c \in\{0,1,2, \ldots, p-1\}\right\} $$

The number of $A$ in $T_p$ such that $A$ is either symmetric or skew-symmetric or both, and $\operatorname{det}(\mathrm{A}) \operatorname{divisible}$ by $p$ is :
A
$(p-1)^2$
B
$2(p-1)$
C
$(p-1)^2+1$
D
$2 p-1$
3
IIT-JEE 2010 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Let $p$ be an odd prime number and $T_p$ be the following set of $2 \times 2$ matrices :

$$ \mathrm{T}_{\mathrm{p}}=\left\{\mathrm{A}=\left[\begin{array}{ll} a & b \\ c & a \end{array}\right]: a, b, c \in\{0,1,2, \ldots, p-1\}\right\} $$

The number of A in $\mathrm{T}_p$ such that the trace of A is not divisible by $p$ but $\operatorname{det}(\mathrm{A})$ is divisible by $p$ is

[Note : The trace of a matrix is the sum of its diagonal entries.]

A
$(p-1)\left(p^2-p+1\right)$
B
$p^3-(p-1)^2$
C
$(p-1)^2$
D
$(p-1)\left(p^2-2\right)$
4
IIT-JEE 2010 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Let $p$ be an odd prime number and $T_p$ be the following set of $2 \times 2$ matrices :

$$ \mathrm{T}_{\mathrm{p}}=\left\{\mathrm{A}=\left[\begin{array}{ll} a & b \\ c & a \end{array}\right]: a, b, c \in\{0,1,2, \ldots, p-1\}\right\} $$

The number of A in $\mathrm{T}_p$ such that $\operatorname{det}(\mathrm{A})$ is not divisible by $p$ is :
A
$2 p^2$
B
$p^3-5 p$
C
$p^3-3 p$
D
$p^3-p^2$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12