1
IIT-JEE 2010 Paper 1 Offline
Numerical
+4
-0
The number of all possible values of $$\theta $$ where $$0 < \theta < \pi ,$$ for which the system of equations $$$\left( {y + z} \right)\cos {\mkern 1mu} 3\theta = \left( {xyz} \right){\mkern 1mu} \sin 3\theta $$$ $$$x\sin 3\theta = {{2\cos 3\theta } \over y} + {{2\sin 3\theta } \over z}$$$ $$$\left( {xyz} \right){\mkern 1mu} \sin 3\theta = \left( {y + 2z} \right){\mkern 1mu} \cos 3\theta + y{\mkern 1mu} sin3\theta $$$

have a solution $$\left( {{x_0},{y_0},{z_0}} \right)$$ with $${y_0}{z_0}{\mkern 1mu} \ne {\mkern 1mu} 0,$$ is

Your input ____
2
IIT-JEE 2010 Paper 1 Offline
Numerical
+4
-0
The maximum value of the expression $${1 \over {{{\sin }^2}\theta + 3\sin \theta \cos \theta + 5{{\cos }^2}\theta }}$$ is
Your input ____
3
IIT-JEE 2010 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $${{z_1}}$$ and $${{z_2}}$$ be two distinct complex number and let z =( 1 - t)$${{z_1}}$$ + t$${{z_2}}$$ for some real number t with 0 < t < 1. IfArg (w) denote the principal argument of a non-zero complex number w, then
A
$$\left| {z - {z_1}} \right| + \left| {z - {z_2}} \right| = \left| {{z_1} - {z_2}} \right|$$
B
Arg $$(z - {z_1})$$ = Arg$$(z - {z_2})$$
C
$$\left| {\matrix{ {z - {z_1}} & {\overline z - {{\overline z }_1}} \cr {{z_2} - {z_1}} & {{{\overline z }_2} - {{\overline z }_1}} \cr } } \right|$$ = 0
D
Arg $$(z - {z_1})$$ = Arg$$({z_2} - {z_1})$$
4
IIT-JEE 2010 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-0.75
Let $$p$$ and $$q$$ be real numbers such that $$p \ne 0,\,{p^3} \ne q$$ and $${p^3} \ne - q.$$ If $${p^3} \ne - q.$$ and $$\,\beta $$ are nonzero complex numbers satisfying $$\alpha \, + \beta = - p\,$$ and $${\alpha ^3} + {\beta ^3} = q,$$ then a quadratic equation having $${\alpha \over \beta }$$ and $${\beta \over \alpha }$$ as its roots is
A
$$\left( {{p^3} + q} \right){x^2} - \left( {{p^3} + 2q} \right)x + \left( {{p^3} + q} \right) = 0$$
B
$$\left( {{p^3} + q} \right){x^2} - \left( {{p^3} - 2q} \right)x + \left( {{p^3} + q} \right) = 0$$
C
$$\left( {{p^3} - q} \right){x^2} - \left( {5{p^3} - 2q} \right)x + \left( {{p^3} - q} \right) = 0$$
D
$$\left( {{p^3} - q} \right){x^2} - \left( {5{p^3} + 2q} \right)x + \left( {{p^3} - q} \right) = 0$$
JEE Advanced Papers
EXAM MAP