1
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1

A fair die is tossed repeatedly until a six is obtained. Let X denote the number of tosses required.

The probability that $$X\ge3$$ equals :

A
$${{125} \over {216}}$$
B
$${{25} \over {36}}$$
C
$${{5} \over {36}}$$
D
$${{25} \over {216}}$$
2
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1

A fair die is tossed repeatedly until a six is obtained. Let X denote the number of tosses required.

The probability that X = 3 equals
A
$${{25} \over {216}}$$
B
$${{25} \over {36}}$$
C
$${{5} \over {36}}$$
D
$${{125} \over {216}}$$
3
IIT-JEE 2009 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Area of the region bounded by the curve $$y = {e^x}$$ and lines $$x=0$$ and $$y=e$$ is
A
$$e-1$$
B
$$\int\limits_1^e {\ln \left( {e + 1 - y} \right)dy} $$
C
$$e - \int\limits_0^1 {{e^x}dx} $$
D
$$\int\limits_1^e {\ln y\,dy} $$
4
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Let $$f$$ be a non-negative function defined on the interval $$[0,1]$$.

If $$\int\limits_0^x {\sqrt {1 - {{(f'(t))}^2}dt} = \int\limits_0^x {f(t)dt,0 \le x \le 1} } $$, and $$f(0) = 0$$, then

A
$$f\left( {{1 \over 2}} \right) < {1 \over 2}$$ and $$f\left( {{1 \over 3}} \right) > {1 \over 3}$$
B
$$f\left( {{1 \over 2}} \right) > {1 \over 2}$$ and $$f\left( {{1 \over 3}} \right) > {1 \over 3}$$
C
$$f\left( {{1 \over 2}} \right) < {1 \over 2}$$ and $$f\left( {{1 \over 3}} \right) < {1 \over 3}$$
D
$$f\left( {{1 \over 2}} \right) > {1 \over 2}$$ and $$f\left( {{1 \over 3}} \right) < {1 \over 3}$$
JEE Advanced Papers
EXAM MAP