1
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Let $$z = x + iy$$ be a complex number where x and y are integers. Then the area of the rectangle whose vertices are the roots of the equation $$\overline z {z^3} + z{\overline z ^3} = 350$$ is

A
48
B
32
C
40
D
80
2
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Let $$z = \,\cos \,\theta \, + i\,\sin \,\theta $$ . Then the value of $$\sum\limits_{m = 1}^{15} {{\mathop{\rm Im}\nolimits} } ({z^{2m - 1}})\,at\,\theta \, = {2^ \circ }$$ is
A
$${1 \over {\sin \,{2^ \circ }}}$$
B
$${1 \over {3\sin \,{2^ \circ }}}$$
C
$${1 \over {2\sin \,{2^ \circ }}}$$
D
$${1 \over {4\sin \,{2^ \circ }}}$$
3
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$P(3,2,6)$$ be a point in space and $$Q$$ be a point on the line $$$\widehat r = \left( {\widehat i - \widehat j + 2\widehat k} \right) + \mu \left( { - 3\widehat i + \widehat j + 5\widehat k} \right)$$$

Then the value of $$\mu $$ for which the vector $${\overrightarrow {PQ} }$$ is parallel to the plane $$x - 4y + 3z = 1$$ is :

A
$${1 \over 4}$$
B
$$-{1 \over 4}$$
C
$${1 \over 8}$$
D
$$-{1 \over 8}$$
4
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

If $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ and $$\overrightarrow d $$ are unit vectors such that $$(\overrightarrow a \times \overrightarrow b )\,.\,(\overrightarrow c \times \overrightarrow d ) = 1$$ and $$\overrightarrow a \,.\,\overrightarrow c = {1 \over 2}$$, then

A
$$\overrightarrow a \,,\,\overrightarrow b ,\overrightarrow c $$ are non-coplanar
B
$$\overrightarrow b \,,\,\overrightarrow c ,\overrightarrow d $$ are non-coplanar
C
$$\overrightarrow b \,,\overrightarrow d $$ are non-parallel
D
$$\overrightarrow a ,\overrightarrow d $$ parallel and $$\overrightarrow b ,\overrightarrow c $$ are parallel
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12