Let $$L = \mathop {\lim }\limits_{x \to 0} {{a - \sqrt {{a^2} - {x^2}} - {{{x^2}} \over 4}} \over {{x^4}}},a > 0$$. If L is finite, then
Let A be the set of all 3 $$\times$$ 3 symmetric matrices all of whose entries are either 0 or 1. Five of these entries are 1 and four of them are 0.
The number of matrices in A is
Let A be the set of all 3 $$\times$$ 3 symmetric matrices all of whose entries are either 0 or 1. Five of these entries are 1 and four of them are 0.
The number of matrices A in A for which the system of linear equations $$A\left[ {\matrix{ x \cr y \cr z \cr } } \right] = \left[ {\matrix{ 1 \cr 0 \cr 0 \cr } } \right]$$ has a unique solution, is
Let A be the set of all 3 $$\times$$ 3 symmetric matrices all of whose entries are either 0 or 1. Five of these entries are 1 and four of them are 0.
The number of matrices A in A for which the system of linear equations $$A\left[ {\matrix{ x \cr y \cr z \cr } } \right] = \left[ {\matrix{ 1 \cr 0 \cr 0 \cr } } \right]$$ is inconsistent, is