1
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-0

Match each of the diatomic molecules in Column I with its property/properties in Column II:

Column I Column II
(A) $${B_2}$$ (P) Paramagnetic
(B) $${N_2}$$ (Q) Undergoes oxidation
(C) $$O_2^ - $$ (R) Undergoes reduction
(D) $${O_2}$$ (S) Bond order $$\ge$$ 2
(T) Mixing of $$s$$ and $$p$$ orbitals

A
$$\mathrm{(A)\to(P),(Q),(R),(T);(B)\to(S),(T);(C)\to(P),(Q);(D)\to(P),(Q),(S)}$$
B
$$\mathrm{(A)\to(P),(S),(R),(T);(B)\to(S),(T);(C)\to(P),(Q);(D)\to(P),(T),(S)}$$
C
$$\mathrm{(A)\to(Q),(R),(T);(B)\to(P),(T);(C)\to(P),(Q);(D)\to(T),(Q),(S)}$$
D
$$\mathrm{(A)\to(P),(R),(T);(B)\to(Q),(T);(C)\to(S),(Q);(D)\to(P),(Q),(S)}$$
2
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Match each of the compounds in Column I with its characteristic reaction(s) in Column II.

Column I Column II
(A) $$C{H_3}C{H_2}C{H_2}CN$$ (P) Reduction with $$Pd - C/{H_2}$$
(B) $$C{H_3}C{H_2}OCOC{H_3}$$ (Q) Reduction with $$SnC{l_2}/HCl$$
(C) $$C{H_3} - CH = CH - C{H_2}OH$$ (R) Development of foul smell on treatment with chloroform and alcoholic KOH
(D) $$C{H_3}C{H_2}C{H_2}C{H_2}N{H_2}$$ (S) Reduction with diisobutylaluminium hydride (DIBAL-H)
(T) Alkaline hydrolysis

A
$$\mathrm{(A)\to(P),(Q),(S),(T);(B)\to(Q),(T);(C)\to(P);(D)\to(S)}$$
B
$$\mathrm{(A)\to(Q), (R), (S),(T);(B)\to(S),(T);(C)\to(P);(D)\to(R)}$$
C
$$\mathrm{(A)\to(P),(R),(S),(T);(B)\to(S),(T);(C)\to(P);(D)\to(R), (T)}$$
D
$$\mathrm{(A)\to(P),(Q),(S),(T);(B)\to(S),(T);(C)\to(P);(D)\to(R)}$$
3
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Let $$z = x + iy$$ be a complex number where x and y are integers. Then the area of the rectangle whose vertices are the roots of the equation $$\overline z {z^3} + z{\overline z ^3} = 350$$ is

A
48
B
32
C
40
D
80
4
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Let $$z = \,\cos \,\theta \, + i\,\sin \,\theta $$ . Then the value of $$\sum\limits_{m = 1}^{15} {{\mathop{\rm Im}\nolimits} } ({z^{2m - 1}})\,at\,\theta \, = {2^ \circ }$$ is
A
$${1 \over {\sin \,{2^ \circ }}}$$
B
$${1 \over {3\sin \,{2^ \circ }}}$$
C
$${1 \over {2\sin \,{2^ \circ }}}$$
D
$${1 \over {4\sin \,{2^ \circ }}}$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12