1
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Let $$f$$ be a non-negative function defined on the interval $$[0,1]$$.
If $$\int\limits_0^x {\sqrt {1 - {{(f'(t))}^2}dt} = \int\limits_0^x {f(t)dt,0 \le x \le 1} } $$, and $$f(0) = 0$$, then
2
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-0
Match the conics in Column I with the statements/expressions in Column II :
Column I | Column II | ||
---|---|---|---|
(A) | Circle | (P) | The locus of the point ($$h,k$$) for which the line $$hx+ky=1$$ touches the circle $$x^2+y^2=4$$. |
(B) | Parabola | (Q) | Points z in the complex plane satisfying $$|z+2|-|z-2|=\pm3$$. |
(C) | Ellipse | (R) | Points of the conic have parametric representation $$x = \sqrt 3 \left( {{{1 - {t^2}} \over {1 + {t^2}}}} \right),y = {{2t} \over {1 + {t^2}}}$$ |
(D) | Hyperbola | (S) | The eccentricity of the conic lies in the interval $$1 \le x \le \infty $$. |
(T) | Points z in the complex plane satisfying $${\mathop{\rm Re}\nolimits} {(z + 1)^2} = |z{|^2} + 1$$. |
3
IIT-JEE 2009 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
In a triangle $$ABC$$ with fixed base $$BC$$, the vertex $$A$$ moves such that
$$$\cos \,B + \cos \,C = 4{\sin ^2}{A \over 2}.$$$
If $$a, b$$ and $$c$$ denote the lengths of the sides of the triangle opposite to the angles $$A, B$$ and $$C$$, respectively, then
4
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
The line passing through the extremity $$A$$ of the major axis and extremity $$B$$ of the minor axis of the ellipse $${x^2} + 9{y^2} = 9$$ meets its auxiliary circle at the point $$M$$. Then the area of the triangle with vertices at $$A$$, $$M$$ and the origin $$O$$ is
Paper analysis
Total Questions
Chemistry
20
Mathematics
20
Physics
20
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006
IIT-JEE 2006 Screening
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004 Screening
IIT-JEE 2004
IIT-JEE 2003 Screening
IIT-JEE 2003
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001 Screening
IIT-JEE 2001
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998 Screening
IIT-JEE 1998
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995 Screening
IIT-JEE 1995
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978