1
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Tangents drawn from the point P (1, 8) to the circle
$${x^2}\, + \,{y^2}\, - \,6x\, - 4y\, - 11 = 0$$
touch the circle at the points A and B. The equation of the cirumcircle of the triangle PAB is
$${x^2}\, + \,{y^2}\, - \,6x\, - 4y\, - 11 = 0$$
touch the circle at the points A and B. The equation of the cirumcircle of the triangle PAB is
2
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
The number of seven digit integers, with sum of the digits equal to 10 and formed by using the digits 1, 2 and 3 only, is
3
IIT-JEE 2009 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
If $${{{{\sin }^4}x} \over 2} + {{{{\cos }^4}x} \over 3} = {1 \over 5},$$ then
4
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-0
Match the statements/expressions in Column I with the open intervals in Column II :
Column I | Column II | ||
---|---|---|---|
(A) | Interval contained in the domain of definition of non-zero solutions of the differential equation $${(x - 3)^2}y' + y = 0$$ | (P) | $$\left( { - {\pi \over 2},{\pi \over 2}} \right)$$ |
(B) | Interval containing the value of the integral $$\int\limits_1^5 {(x - 1)(x - 2)(x - 3)(x - 4)(x - 5)dx} $$ | (Q) | $$\left( {0,{\pi \over 2}} \right)$$ |
(C) | Interval in which at least one of the points of local maximum of $${\cos ^2}x + \sin x$$ lies | (R) | $$\left( {{\pi \over 8},{{5\pi } \over 4}} \right)$$ |
(D) | Interval in which $${\tan ^{ - 1}}(\sin x + \cos x)$$ is increasing | (S) | $$\left( {0,{\pi \over 8}} \right)$$ |
(T) | $$( - \pi ,\pi )$$ |
Paper analysis
Total Questions
Chemistry
20
Mathematics
20
Physics
20
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006
IIT-JEE 2006 Screening
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004 Screening
IIT-JEE 2004
IIT-JEE 2003 Screening
IIT-JEE 2003
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001 Screening
IIT-JEE 2001
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998 Screening
IIT-JEE 1998
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995 Screening
IIT-JEE 1995
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978