1
IIT-JEE 1999
MCQ (Single Correct Answer)
+2
-0.5
The harmonic mean of the roots of the equation $$\left( {5 + \sqrt 2 } \right){x^2} - \left( {4 + \sqrt 5 } \right)x + 8 + 2\sqrt 5 = 0$$ is
A
2
B
4
C
6
D
8
2
IIT-JEE 1999
Subjective
+10
-0
Let a, b, c, d be real numbers in G.P. If u, v, w, satisfy the system of equations
u + 2v + 3w = 6
4u + 5v + 6w = 12
6u + 9v = 4

then show that the roots of the equation $$\left( {{1 \over u} + {1 \over v} + {1 \over w}} \right){x^2}$$
$$ + [{(b - c)^2} + {(c - a)^2} + {(d - b)^2}]x + u + v + w = 0$$ and $$20{x^2} + 10{(a - d)^2}x - 9 = 0$$ are reciprocals of each other.

3
IIT-JEE 1999
MCQ (More than One Correct Answer)
+3
-0.75
For a positive integer $$n$$, let
$$a\left( n \right) = 1 + {1 \over 2} + {1 \over 3} + {1 \over 4} + .....\,{1 \over {\left( {{2^n}} \right) - 1}}$$. Then
A
$$a\left( {100} \right) \le 100$$
B
$$a\left( {100} \right) > 100$$
C
$$a\left( {200} \right) \le 100$$
D
$$a\left( {200} \right) > 100$$
4
IIT-JEE 1999
MCQ (Single Correct Answer)
+2
-0.5
Lt $$PQR$$ be a right angled isosceles triangle, right angled at $$P(2, 1)$$. If the equation of the line $$QR$$ is $$2x + y = 3,$$ then the equation representing the pair of lines $$PQ$$ and $$PR$$ is
A
$$3{x^2} - 3{y^2} + 8xy + 20x + 10y + 25 = 0$$
B
$$3{x^2} - 3{y^2} + 8xy - 20x - 10y + 25 = 0$$
C
$$3{x^2} - 3{y^2} + 8xy + 10x + 15y + 20 = 0$$
D
$$3{x^2} - 3{y^2} - 8xy - 10x - 15y - 20 = 0$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12