1
IIT-JEE 1999
MCQ (Single Correct Answer)
+2
-0.5
Let $$P$$ $$\left( {a\,\sec \,\theta ,\,\,b\,\tan \theta } \right)$$ and $$Q$$ $$\left( {a\,\sec \,\,\phi ,\,\,b\,\tan \,\phi } \right)$$, where $$\theta + \phi = \pi /2,$$, be two points on the hyperbola $${{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1$$.

If $$(h, k)$$ is the point of intersection of the normals at $$P$$ and $$Q$$, then $$k$$ is equal to

A
$${{{a^2} + {b^2}} \over a}$$
B
$$ - \left( {{{{a^2} + {b^2}} \over a}} \right)$$
C
$${{{a^2} + {b^2}} \over b}$$
D
$$ - \left( {{{{a^2} + {b^2}} \over b}} \right)$$
2
IIT-JEE 1999
MCQ (Single Correct Answer)
+2
-0.5
The curve described parametrically by $$x = {t^2} + t + 1,$$ $$y = {t^2} - t + 1 $$ represents
A
a pair of straight lines
B
an ellipse
C
a parabola
D
a hyperbola
3
IIT-JEE 1999
MCQ (Single Correct Answer)
+2
-0.5
If $$x$$ $$=$$ $$9$$ is the chord of contact of the hyperbola $${x^2} - {y^2} = 9,$$ then the equation of the vcorresponding pair of tangents is
A
$$9{x^2} - 8{y^2} + 18x - 9 = 0$$
B
$$9{x^2} - 8{y^2} - 18x + 9 = 0$$
C
$$9{x^2} - 8{y^2} - 18x - 9 = 0$$
D
$$9{x^2} - 8{y^2} + 18x + 9 = 0$$
4
IIT-JEE 1999
MCQ (More than One Correct Answer)
+3
-0.75
On the ellipse $$4{x^2} + 9{y^2} = 1,$$ the points at which the tangents are parallel to the line $$8x = 9y$$ are
A
$$\left( {{2 \over 5},{1 \over 5}} \right)$$
B
$$\left( -{{2 \over 5},{1 \over 5}} \right)$$
C
$$\left( -{{2 \over 5},-{1 \over 5}} \right)$$
D
$$\left( {{2 \over 5},-{1 \over 5}} \right)$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12