1
IIT-JEE 1999
MCQ (Single Correct Answer)
+2
-0.5
If the roots of the equation $${x^2} - 2ax + {a^2} + a - 3 = 0$$ are real and less than 3, then
A
$$a < 2$$
B
$$2 \le a \le 3$$
C
$$3 < a \le 4$$
D
$$a > 4$$
2
IIT-JEE 1999
MCQ (Single Correct Answer)
+2
-0.5
If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$ the coefficients of $$x$$ and $${x^2}$$ are $$3$$ and $$-6$$ respectively, then $$m$$ is
A
6
B
9
C
12
D
24
3
IIT-JEE 1999
Subjective
+10
-0
Let $$n$$ be any positive integer. Prove that $$$\sum\limits_{k = 0}^m {{{\left( {\matrix{ {2n - k} \cr k \cr } } \right)} \over {\left( {\matrix{ {2n - k} \cr n \cr } } \right)}}.{{\left( {2n - 4k + 1} \right)} \over {\left( {2n - 2k + 1} \right)}}{2^{n - 2k}} = {{\left( {\matrix{ n \cr m \cr } } \right)} \over {\left( {\matrix{ {2n - 2m} \cr {n - m} \cr } } \right)}}{2^{n - 2m}}} $$$

for each non-be gatuve integer $$m \le n.$$ $$\,\left( {Here\left( {\matrix{ p \cr q \cr } } \right) = {}^p{C_q}} \right).$$

4
IIT-JEE 1999
MCQ (Single Correct Answer)
+2
-0.5
Let $${a_1},{a_2},......{a_{10}}$$ be in $$A,\,P,$$ and $${h_1},{h_2},......{h_{10}}$$ be in H.P. If $${a_1} = {h_1} = 2$$ and $${a_{10}} = {h_{10}} = 3,$$ then $${a_4}{h_7}$$ is
A
2
B
3
C
5
D
6
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12