1
IIT-JEE 1999
Subjective
+10
-0
Let $$n$$ be any positive integer. Prove that
$$$\sum\limits_{k = 0}^m {{{\left( {\matrix{
{2n - k} \cr
k \cr
} } \right)} \over {\left( {\matrix{
{2n - k} \cr
n \cr
} } \right)}}.{{\left( {2n - 4k + 1} \right)} \over {\left( {2n - 2k + 1} \right)}}{2^{n - 2k}} = {{\left( {\matrix{
n \cr
m \cr
} } \right)} \over {\left( {\matrix{
{2n - 2m} \cr
{n - m} \cr
} } \right)}}{2^{n - 2m}}} $$$
for each non-be gatuve integer $$m \le n.$$ $$\,\left( {Here\left( {\matrix{ p \cr q \cr } } \right) = {}^p{C_q}} \right).$$
2
IIT-JEE 1999
MCQ (Single Correct Answer)
+2
-0.5
Let $${a_1},{a_2},......{a_{10}}$$ be in $$A,\,P,$$ and $${h_1},{h_2},......{h_{10}}$$ be in H.P. If $${a_1} = {h_1} = 2$$ and $${a_{10}} = {h_{10}} = 3,$$ then $${a_4}{h_7}$$ is
3
IIT-JEE 1999
MCQ (Single Correct Answer)
+2
-0.5
The harmonic mean of the roots of the equation $$\left( {5 + \sqrt 2 } \right){x^2} - \left( {4 + \sqrt 5 } \right)x + 8 + 2\sqrt 5 = 0$$ is
4
IIT-JEE 1999
Subjective
+10
-0
Let a, b, c, d be real numbers in G.P. If u, v, w, satisfy the system of equations
u + 2v + 3w = 6
4u + 5v + 6w = 12
6u + 9v = 4
u + 2v + 3w = 6
4u + 5v + 6w = 12
6u + 9v = 4
then show that the roots of the equation $$\left( {{1 \over u} + {1 \over v} + {1 \over w}} \right){x^2}$$
$$ + [{(b - c)^2} + {(c - a)^2} + {(d - b)^2}]x + u + v + w = 0$$ and $$20{x^2} + 10{(a - d)^2}x - 9 = 0$$ are reciprocals of each other.
Paper analysis
Total Questions
Chemistry
15
Mathematics
41
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978