1
IIT-JEE 1999
MCQ (Single Correct Answer)
+2
-0.5
If $$x$$ $$=$$ $$9$$ is the chord of contact of the hyperbola $${x^2} - {y^2} = 9,$$ then the equation of the vcorresponding pair of tangents is
A
$$9{x^2} - 8{y^2} + 18x - 9 = 0$$
B
$$9{x^2} - 8{y^2} - 18x + 9 = 0$$
C
$$9{x^2} - 8{y^2} - 18x - 9 = 0$$
D
$$9{x^2} - 8{y^2} + 18x + 9 = 0$$
2
IIT-JEE 1999
MCQ (More than One Correct Answer)
+3
-0.75
On the ellipse $$4{x^2} + 9{y^2} = 1,$$ the points at which the tangents are parallel to the line $$8x = 9y$$ are
A
$$\left( {{2 \over 5},{1 \over 5}} \right)$$
B
$$\left( -{{2 \over 5},{1 \over 5}} \right)$$
C
$$\left( -{{2 \over 5},-{1 \over 5}} \right)$$
D
$$\left( {{2 \over 5},-{1 \over 5}} \right)$$
3
IIT-JEE 1999
Subjective
+10
-0
Find the co-ordinates of all the points $$P$$ on the ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, for which the area of the triangle $$PON$$ is maximum, where $$O$$ denotes the origin and $$N$$, the foot of the perpendicular from $$O$$ to the tangent at $$P$$.
4
IIT-JEE 1999
Subjective
+10
-0
Consider the family of circles $${x^2} + {y^2} = {r^2},\,\,2 < r < 5$$. If in the first quadrant, the common taingent to a circle of this family and the ellipse $$4{x^2} + 25{y^2} = 100$$ meets the co-ordinate axes at $$A$$ and $$B$$, then find the equation of the locus of vthe mid-point of $$AB$$.
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12