1
IIT-JEE 1999
MCQ (Single Correct Answer)
+2
-0.5
If two distinct chords, drawn from the point (p, q) on the circle $${x^2}\, + \,{y^2} = \,px\, + \,qy\,\,(\,where\,pq\, \ne \,0)$$ are bisected by the x - axis, then
A
$${p^2}\, = \,\,{q^2}$$
B
$$\,{p^2}\, = \,\,8\,{q^2}$$
C
$${p^2}\, < \,\,8\,{q^2}$$
D
$${p^2}\, > \,\,8\,{q^2}$$.
2
IIT-JEE 1999
MCQ (Single Correct Answer)
+2
-0.5
$$If\,i = \sqrt { - 1} ,\,\,then\,\,4 + 5{\left( { - {1 \over 2} + {{i\sqrt 3 } \over 2}} \right)^{334}} + 3{\left( { - {1 \over 2} + {{i\sqrt 3 } \over 2}} \right)^{365}}$$ is equal to
A
$$1 - i\sqrt 3 $$
B
$$ - 1 + i\sqrt 3 $$
C
$$i\sqrt 3 $$
D
$$ - i\sqrt 3 $$
3
IIT-JEE 1999
MCQ (More than One Correct Answer)
+3
-0.75
For a positive integer $$\,n$$, let
$${f_n}\left( \theta \right) = \left( {\tan {\theta \over 2}} \right)\,\left( {1 + \sec \theta } \right)\,\left( {1 + \sec 2\theta } \right)\,\left( {1 + \sec 4\theta } \right).....\left( {1 + \sec {2^n}\theta } \right).$$ Then
A
$${f_2}\left( {{\pi \over {16}}} \right) = 1$$
B
$${f_3}\left( {{\pi \over {32}}} \right) = 1$$
C
$${f_4}\left( {{\pi \over {64}}} \right) = 1$$
D
$${f_5}\left( {{\pi \over {128}}} \right) = 1$$
4
IIT-JEE 1999
Subjective
+10
-0
For complex numbers z and w, prove that $${\left| z \right|^2}w - {\left| w \right|^2}z = z - w$$ if and only if $$ z = w\,or\,z\overline {\,w} = 1$$.
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12