1
IIT-JEE 1999
Subjective
+10
-0
Find the co-ordinates of all the points $$P$$ on the ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, for which the area of the triangle $$PON$$ is maximum, where $$O$$ denotes the origin and $$N$$, the foot of the perpendicular from $$O$$ to the tangent at $$P$$.
2
IIT-JEE 1999
Subjective
+10
-0
Consider the family of circles $${x^2} + {y^2} = {r^2},\,\,2 < r < 5$$. If in the first quadrant, the common taingent to a circle of this family and the ellipse $$4{x^2} + 25{y^2} = 100$$ meets the co-ordinate axes at $$A$$ and $$B$$, then find the equation of the locus of vthe mid-point of $$AB$$.
3
IIT-JEE 1999
Subjective
+10
-0
Let $$ABC$$ be a triangle having $$O$$ and $$I$$ as its circumcenter and in centre respectively. If $$R$$ and $$r$$ are the circumradius and the inradius, respectively, then prove that $${\left( {IO} \right)^2} = {R^2} - 2{\mathop{\rm Rr}\nolimits} $$. Further show that the triangle BIO is a right-angled triangle if and only if $$b$$ is arithmetic mean of $$a$$ and $$c$$.
4
IIT-JEE 1999
MCQ (Single Correct Answer)
+2
-0.5
The number of real solutions of
$${\tan ^{ - 1}}\,\,\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\,\,\sqrt {{x^2} + x + 1} = \pi /2$$ is
$${\tan ^{ - 1}}\,\,\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\,\,\sqrt {{x^2} + x + 1} = \pi /2$$ is
Paper analysis
Total Questions
Chemistry
15
Mathematics
41
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006
IIT-JEE 2006 Screening
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004 Screening
IIT-JEE 2004
IIT-JEE 2003 Screening
IIT-JEE 2003
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001 Screening
IIT-JEE 2001
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998 Screening
IIT-JEE 1998
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995 Screening
IIT-JEE 1995
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978