1
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $m \in \mathbb{R}$, when angle between the vectors $\overline{\mathrm{p}}=\mathrm{m} y \hat{\mathrm{i}}-6 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ and $\overline{\mathrm{q}}=y \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \mathrm{~m} y \hat{\mathrm{k}}$ is obtuse angle, is

A
$\mathrm{m}<-\frac{4}{2}$
B
$\mathrm{m}=0$
C
$m>0$
D
$-\frac{4}{3}<\mathrm{m}<0$
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The volume of the tetrahedron whose coterminous edges are represented by

$$ \bar{a}=-12 \hat{i}+p \hat{k}, \bar{b}=3 \hat{j},-\hat{k}, \bar{c}=2 \hat{i}+\hat{j}-15 \hat{k} $$

570 cu. units, then $\mathrm{p}=$

A
7
B
-12
C
-482
D
482
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value and minimum value of the volume of the parallelopiped having coterminous edges $\hat{\mathrm{i}}+x \hat{\mathrm{j}}+\hat{\mathrm{k}}, \hat{\mathrm{j}}+x \hat{\mathrm{k}}$ and $x \hat{\mathrm{i}}+\hat{\mathrm{k}}$ are respectively

A
$\frac{1}{3 \sqrt{3}}+1, \frac{-1}{3 \sqrt{3}}+1$
B
$\frac{2}{3 \sqrt{3}}+1, \frac{-2}{3 \sqrt{3}}+1$
C
$\frac{1}{\sqrt{3}}+1, \frac{-1}{\sqrt{3}}+1$
D
$\frac{2}{\sqrt{3}}+1, \frac{-2}{\sqrt{3}}+1$
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{a}}$ and $\overline{\mathrm{c}}$ be unit vectors at an angle $\frac{\pi}{3}$ with each other. If $(\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})) \cdot(\overline{\mathrm{a}} \times \overline{\mathrm{c}})=5$, then $[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]=$

A
10
B
-10
C
9
D
$\quad-9$
MHT CET Subjects
EXAM MAP