1
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The particular solution of the differential equation $$\left(1+y^2\right) \mathrm{d} x-x y \mathrm{~d} y=0$$ at $$x=1, y=0$$, represents

A
circle
B
pair of straight lines
C
hyperbola
D
ellipse
2
MHT CET 2022 11th August Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x+y}{x-y}$$ is (where $$C$$ is a constant of integration.)

A
$$\tan ^{-1}\left(\frac{y}{x}\right)+\log \left(\frac{y^2+3 x^2}{x^2}\right)=\log (x)+C$$
B
$$\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{y}{x \sqrt{3}}\right)+\log \left(\frac{y^2+3 x^2}{x^2}\right)^{\frac{1}{2}}=\log (x)+C$$
C
$$\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{y}{x \sqrt{3}}\right)-\log \left(\frac{y^2+3 x^2}{x^2}\right)^{\frac{1}{2}}=\log (x)+C$$
D
$$\tan ^{-1}\left(\frac{x}{y}\right)+\log \left(\frac{y^2+3 x^2}{x^2}\right)=\log (x)+C$$
3
MHT CET 2022 11th August Evening Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation $$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{1-y^2}}{y}$$ determines a family of circles with

A
fixed radius of 1 unit and variable centres along the $$X$$-axis
B
fixed radius of 1 unit and variable centres along the $$Y$$-axis
C
variable radii and a fixed centre at $$(0,1)$$
D
variable radii and a fixed centre at $$(0,-1)$$
4
MHT CET 2021 24th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The particular solution of the differential equation $$\left(1+e^{2 x}\right) d y+e^x\left(1+y^2\right) d x=0$$ at $$x=0$$ and y = 1 is

A
$$ \tan ^{-1} e^x-\tan ^{-1} y=0 $$
B
$$ \tan ^{-1} e^x+\tan ^{-1} y=\frac{\pi}{2} $$
C
$$ 2 \tan ^{-1} e^x+\tan ^{-1} y=\frac{3 \pi}{4} $$
D
$$ \tan ^{-1} e^x-\tan ^{-1} y=\frac{3 \pi}{4} $$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12