1
MHT CET 2021 23th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The particular solution of differential equation $$(x+y) d y+(x-y) d x=0$$ at $$x=y=1$$ is

A
$$\log \left|\frac{x^2+y^2}{2}\right|=\frac{\pi}{2}-2 \tan ^{-1}\left(\frac{y}{x}\right)$$
B
$$\log \left|x^2+y^2\right|=\frac{\pi}{2}-2 \tan ^{-1}\left(\frac{y}{x}\right)$$
C
$$\log \left|x^2+y^2\right|=\frac{\pi}{2}-2 \tan ^{-1}\left(\frac{y}{x}\right)$$
D
$$\log \left|\frac{x^2+y^2}{2}\right|=\frac{\pi}{4}-2 \tan ^{-1}\left(\frac{y}{x}\right)$$
2
MHT CET 2021 23th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $$\frac{d y}{d x}=2^{y-x}$$ is

A
$$2^x-2^y=c$$
B
$$\frac{1}{2^x}-\frac{1}{2^y}=c$$
C
$$\frac{1}{2^x}+\frac{1}{2^y}=c$$
D
$$2^x+2^y=c$$
3
MHT CET 2021 23th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the surrounding air is kept at $$25^{\circ} \mathrm{C}$$ and a body cools from $$80^{\circ} \mathrm{C}$$ to $$50^{\circ} \mathrm{C}$$ in 30 minutes, then temperature of the body after one hour will be

A
$$31.72^{\circ} \mathrm{C}$$ approximately
B
$$34.74^{\circ} \mathrm{C}$$ approximately
C
$$32.36^{\circ} \mathrm{C}$$ approximately
D
$$36.36^{\circ} \mathrm{C}$$ approximately
4
MHT CET 2021 22th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The degree of the differential equation whose solution is $$y^2=8 a(x+a)$$, is

A
2
B
1
C
4
D
3
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12