The particular solution of differential equation $\left(1+y^2\right)(1+\log x) \mathrm{d} x+x \mathrm{~d} y=0$ at $x=1, y=1$ is
Let $y=y(x)$ be the solution of the differential equation $\sin x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \cos x=4 x, x \in(0, \pi)$. If $y\left(\frac{\pi}{2}\right)=0$, then $y\left(\frac{\pi}{6}\right)$ is equal to
Given that the slope of the tangent to a curve $y=y(x)$ at any point $(x, y)$ is $\frac{2 y}{x^2}$. If the curve passes through the centre of the circle $x^2+y^2-2 x-2 y=0$, then its equation is
A wet substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the open air loses half its moisture during the first hour, then the time t , in which $99 \%$ of the moisture will be lost, is