1
MHT CET 2021 21th September Morning Shift
+1
-0

When the value of acceleration due to gravity '$$g$$' becomes $$\frac{g}{3}$$ above surface of height '$$h$$' then relation between '$$h$$' and '$$R$$' is ( $$\mathrm{R}=$$ radius of earth)

A
$$\mathrm{h}=\frac{\mathrm{R}}{\sqrt{3}-1}$$
B
$$\mathrm{h}=\frac{\sqrt{3}}{\mathrm{R}}$$
C
$$h=(\sqrt{2}-1) R$$
D
$$\mathrm{h}=(\sqrt{3}-1) \mathrm{R}$$
2
MHT CET 2021 21th September Morning Shift
+1
-0

A particle of mass '$$m$$' is kept at rest at a height $$3 R$$ from the surface of earth, where '$$R$$' is radius of earth and '$$M$$' is the mass of earth. The minimum speed with which it should be projected, so that it does not return back is ( $$g=$$ acceleration due to gravity on the earth's surface)

A
$$\left[\frac{\mathrm{GM}}{2 \mathrm{R}}\right]^{1 / 2}$$
B
$$\left[\frac{\mathrm{gR}}{4}\right]^{1 / 2}$$
C
$$\left[\frac{2 \mathrm{~g}}{\mathrm{R}}\right]^{1 / 2}$$
D
$$\left[\frac{\mathrm{GM}}{\mathrm{R}}\right]^{1 / 2}$$
3
MHT CET 2021 20th September Evening Shift
+1
-0

A body is projected from earth's surface with thrice the escape velocity from the surface of the earth. What will be its velocity when it will escape the gravitational pull?

A
$$2 \mathrm{~V}_{\mathrm{e}}$$
B
$$4 \mathrm{~V}_{\mathrm{e}}$$
C
$$2 \sqrt{2} \mathrm{~V}_{\mathrm{e}}$$
D
$$\frac{\mathrm{V}_{\mathrm{e}}}{2}$$
4
MHT CET 2021 20th September Evening Shift
+1
-0

The depth at which acceleration due to gravity becomes $$\frac{\mathrm{g}}{\mathrm{n}}$$ is [ $$\mathrm{R}$$ = radius of earth, $$\mathrm{g}=$$ acceleration due to gravity, $$\mathrm{n}=$$ integer $$]$$

A
$$\frac{\mathrm{R}(\mathrm{n}-1)}{\mathrm{n}}$$
B
$$\frac{(\mathrm{n}-1)}{\mathrm{nR}}$$
C
$$\frac{\mathrm{Rn}}{(\mathrm{n}-1)}$$
D
$$\frac{\mathrm{n}}{\mathrm{R}(\mathrm{n}-1)}$$
EXAM MAP
Medical
NEETAIIMS