1
MHT CET 2021 21th September Evening Shift
+2
-0

The differential equation of the family of circles touching $$y$$-axis at the origin is

A
$$x^2-y^2-2 x y \frac{d y}{d x}=0$$
B
$$x^2-y^2+2 x y \frac{d y}{d x}=0$$
C
$$x^2+y^2-2 x y \frac{d y}{d x}=0$$
D
$$x^2+y^2+2 x y \frac{d y}{d x}=0$$
2
MHT CET 2021 21th September Evening Shift
+2
-0

The general solution of the differential equation. $$\left(\frac{y}{x}\right) \cos \left(\frac{y}{x}\right) d x-\left[\left(\frac{x}{y}\right) \sin \left(\frac{y}{x}\right)+\cos \left(\frac{y}{x}\right)\right] d y=0$$ is

A
$$y^2 \sin \left(\frac{y}{x}\right)=k$$
B
$$\mathrm{x} \sin \left(\frac{\mathrm{y}}{\mathrm{x}}\right)=\mathrm{k}$$
C
$$\sin \left(\frac{y}{x}\right)=k$$
D
$$y \sin \left(\frac{y}{x}\right)=k$$
3
MHT CET 2021 21th September Evening Shift
+2
-0

If the half life period of a substance is 5 years, then the total amount of the substance left after 15 years, when initial amount is 64 gms is

A
8 gms
B
16 gms
C
2 gms
D
32 gms
4
MHT CET 2021 21th September Evening Shift
+2
-0

If $$m$$ is order and $$n$$ is degree of the differential equation $$\left(\frac{d^2 y}{d x^2}\right)^5+4 \frac{\left(\frac{d^2 y}{d x^2}\right)}{\left(\frac{d^3 y}{d x^3}\right)}+\left(\frac{d^3 y}{d x^3}\right)=x^2$$ then

A
$$\mathrm{m}=3, \mathrm{n}=1$$
B
$$\mathrm{m}=3, \mathrm{n}=2$$
C
$$\mathrm{m}=3, \mathrm{n}=3$$
D
$$\mathrm{m}=3, \mathrm{n}=5$$
MHT CET Subjects
Physics
Mechanics
Optics
Electromagnetism
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Calculus
Coordinate Geometry
EXAM MAP
Joint Entrance Examination