1
MHT CET 2021 21th September Morning Shift
+2
-0

The differential equation of family of circles whose centres lie on $$\mathrm{X}$$-axis is

A
$$\frac{d^2 y}{d x^2}+\left(\frac{d y}{d x}\right)^2+1=0$$
B
$$y\left(\frac{d^2 y}{d x^2}\right)+\left(\frac{d y}{d x}\right)^2+1=0$$
C
$$y\left(\frac{d^2 y}{d x^2}\right)-\left(\frac{d y}{d x}\right)^2-1=0$$
D
$$y\left(\frac{d^2 y}{d x^2}\right)+\left(\frac{d y}{d x}\right)^2-1=0$$
2
MHT CET 2021 21th September Morning Shift
+2
-0

The general solution of the differential equation $$y(1+\log x)\left(\frac{d x}{d y}\right)-x \log x=0$$ is

A
$$y(1+\log x)=c$$
B
$$x \log x=y c$$
C
$$x \log x=y+c$$
D
$$\log x-y=c$$
3
MHT CET 2021 21th September Morning Shift
+2
-0

The general solution of the differential equation $$\frac{d y}{d x}=\frac{x+2 y-1}{x+2 y+1}$$ is

A
$$3(x+y)+4 \log |3 x+6 y-1|=K$$
B
$$3(x-y)+4 \log |3 x+6 y-1|=K$$
C
$$6(-x+y)+4 \log |3 x+6 y-1|=K$$
D
$$6(x+y)+4 \log |3 x+6 y-1|=K$$
4
MHT CET 2021 20th September Evening Shift
+2
-0

If $$\mathrm{m}$$ is order and $$\mathrm{n}$$ is degree of the differential equation $$y=\frac{d p}{d x}+\sqrt{a^2 p^2-b^2}$$, where $$p=\frac{d y}{d x}$$, then the value of $$m+n$$ is

A
2
B
3
C
4
D
5
MHT CET Subjects
Physics
Mechanics
Optics
Electromagnetism
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Calculus
Coordinate Geometry
EXAM MAP
Joint Entrance Examination