1
MHT CET 2021 22th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of all family of lines $$y=m x+\frac{4}{m}$$ obtained by eliminating the arbitrary constant $$\mathrm{m}$$ is

A
$$y\left(\frac{d y}{d x}\right)=4$$
B
$$x\left(\frac{d y}{d x}\right)^2+y\left(\frac{d y}{d x}\right)+4=0$$
C
$$x\left(\frac{d y}{d x}\right)+4=0$$
D
$$x\left(\frac{d y}{d x}\right)^2-y\left(\frac{d y}{d x}\right)+4=0$$
2
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\text{I} : y^{\prime}=\frac{y+x}{x} ; \quad \text { II }: y^{\prime}=\frac{x^2+y}{x^3} ; \quad \text { III }: y^{\prime}=\frac{2 x y}{y^2-x^2}$$

S1 : Differential equations given by I and II are homogeneous differential equations.

S2 : Differential equations given by II and III are homogeneous differential equations.

S3 : Differential equations given by I and III are homogeneous differential equations.

A
only S1 is valid
B
both S1 and S2 are valid
C
only S3 is valid
D
only S2 is valid.
3
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of the family of circles touching $$y$$-axis at the origin is

A
$$x^2-y^2-2 x y \frac{d y}{d x}=0$$
B
$$x^2-y^2+2 x y \frac{d y}{d x}=0$$
C
$$x^2+y^2-2 x y \frac{d y}{d x}=0$$
D
$$x^2+y^2+2 x y \frac{d y}{d x}=0$$
4
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation. $$\left(\frac{y}{x}\right) \cos \left(\frac{y}{x}\right) d x-\left[\left(\frac{x}{y}\right) \sin \left(\frac{y}{x}\right)+\cos \left(\frac{y}{x}\right)\right] d y=0$$ is

A
$$y^2 \sin \left(\frac{y}{x}\right)=k$$
B
$$\mathrm{x} \sin \left(\frac{\mathrm{y}}{\mathrm{x}}\right)=\mathrm{k}$$
C
$$\sin \left(\frac{y}{x}\right)=k$$
D
$$y \sin \left(\frac{y}{x}\right)=k$$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12