1
MHT CET 2023 10th May Morning Shift
+2
-0

The differential equation $$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{1-y^2}}{y}$$ determines a family of circles with

A
variable radii and fixed centre at $$(0,1)$$.
B
variable radii and fixed centre at $$(0,-1)$$.
C
fixed radius of 1 unit and variable centre along the $$\mathrm{Y}$$-axis.
D
fixed radius of 1 unit and variable centre along the $$\mathrm{X}$$-axis.
2
MHT CET 2023 10th May Morning Shift
+2
-0

General solution of the differential equation $$\cos x(1+\cos y) \mathrm{d} x-\sin y(1+\sin x) \mathrm{d} y=0$$ is

A
$$(1+\cos x)(1+\sin y)=c$$
B
$$1+\sin x+\cos y=c$$
C
$$(1+\sin x)(1+\cos y)=c$$
D
$$1+\sin x \cdot \cos y=c$$
3
MHT CET 2023 9th May Evening Shift
+2
-0

General solution of the differential equation $$\log \left(\frac{d y}{d x}\right)=a x+b y$$ is

A
$$a e^{b y}+b e^{a x}=c_1$$, where $$c_1$$ is a constant.
B
$$a e^{-b y}+b^{-a x}=c_1$$, where $$c_1$$ is a constant.
C
$$a e^{-b y}+b e^{a x}=c_1$$, where $$c_1$$ is a constant.
D
$$a e^{b y}+b e^{-a x}=c_1$$, where $$c_1$$ is a constant.
4
MHT CET 2023 9th May Evening Shift
+2
-0

The differential equation of all circles which pass through the origin and whose centres lie on $$\mathrm{Y}$$-axis is

A
$$\left(x^2-y^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}-2 x y=0$$
B
$$\left(x^2-y^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+2 x y=0$$
C
$$\left(x^2-y^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+x y=0$$
D
$$\left(x^2-y^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}-x y=0$$
EXAM MAP
Medical
NEET