1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $y=y(x)$ be the solution of the differential equation $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=x \log x,(x>1)$ If $2(y(2))=\log 4-1$ then the value of $y(\mathrm{e})$ is

A
$\frac{\mathrm{e}^2}{4}$
B
$\frac{-\mathrm{e}^2}{2}$
C
$\frac{-\mathrm{e}}{2}$
D
$\frac{\mathrm{e}}{4}$
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y(x)$ is the solution of the differential equation $(x+2) \frac{\mathrm{d} y}{\mathrm{~d} x}=x^2+4 x-9, x \neq-2$ and $y(0)=0$, then $y(-4)$ is equal to

A
0
B
1
C
$-$1
D
2
3
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The bacteria increase at the rate proportional to the number of bacteria present. If the original number N doubles in 8 hours, then the number of bacteria in 24 hours will be

A
8 N
B
16 N
C
32 N
D
64 N
4
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of $\frac{\mathrm{d} y}{\mathrm{~d} x}+\sin \left(\frac{x+y}{2}\right)=\sin \left(\frac{x-y}{2}\right)$ is

A
$\log \tan \left(\frac{y}{2}\right)=\mathrm{C}-2 \sin x$
B
$\log \tan \left(\frac{y}{4}\right)=\mathrm{C}-2 \sin \left(\frac{x}{2}\right)$
C
$\log \tan \left(\frac{y}{2}+\frac{\pi}{4}\right)=\mathrm{C}-2 \sin x$
D
$\log \tan \left(\frac{y}{2}+\frac{\pi}{4}\right)=\mathrm{C}-2 \sin \left(\frac{x}{2}\right)$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12